8.3.2 Структура и свойства отпущенной стали
Мартенсит отпуска, как и мартенсит закалки, имеет пластинчатую структуру, но отличается более сильной травимостью и выглядит темнее.
Получаемые при отпуске феррито-цементитные структуры называются так же, как и продукты распада переохлажденного аустенита - троостит, сорбит, однако отличаются от них тем, что имеют не пластинчатое, а зернистое строение. Карбидная фаза в них - цементит - имеет зернистую форму, дисперсность структуры зависит от температуры отпуска, так как она определяет степень развития процесса коагуляции. После отпуска в интервале температур 350-500°С получается наиболее дисперсная феррито-цементитная структура - троостит отпуска. Благодаря сильной травимости в оптическом микроскопе он имеет вид темного поля. Рассмотреть строение троостита отпуска можно только с помощью электронного микроскопа при увеличениях х4000-8000. Сорбит отпуска образуется после нагрева закаленной стали до температур 500-650 °С. Его строение различимо при сравнительно небольших увеличениях – х 500 и более. Отпуск при температурах, близких к АС1, приводит к образованию наиболее грубой феррито-цементитной смеси – перлита, который, в соответствии с его строением, называется зернистым. Отпуск вызывает изменение механических свойств закаленных сталей. (рис.8.6).
При нагреве до 200 °С твердость и прочность сталей практически не изменяются, снижается их хрупкость. Дальнейшее повышение температуры отпуска приводит к заметному снижению твердости и прочности, а пластичность и ударная вязкость при этом повышаются. Наиболее высокие показатели пластичности и ударной вязкости при повышенной прочности приобретают стали после отпуска при температурах 600-650 °С.
Указанный характер изменения механических свойств является общей тенденцией, в случае высокоуглеродистых и легированных сталей наблюдаются некоторые отклонения.
Для большинства легированных конструкционных сталей присуща отпускная хрупкость. Сталь в состоянии отпускной хрупкости характеризуется низкой ударной вязкостью (рис. 8.7), при чем на других механических свойствах при комнатной температуре состояние отпускной хрупкости не сказывается. Отпускная хрупкость бывает необратимой (при температуре отпуска 250-400 °С) и обратимой (при температуре отпуска 450-650 °С).
Как видно из рис.8.7 на отпускную хрупкость стали отпущенной при 250-400°С не влияет скорость охлаждения и она не устраняется повторным нагревом и быстрым охлаждением. Причиной необратимой хрупкости считают выделение карбида в виде пленки по границам зерен при распаде мартенсита.
Ударная вязкость стали после отпуска при 450-650 °С зависит от скорости охлаждения. Отпускную хрупкость, возникшую при медленном охлаждении, можно устранить повторным нагревом и быстрым охлаждением.
На восприимчивость стали к отпускной хрупкости большое влияние оказывает химический состав: Cr, P, Mn, As активно вызывают отпускную хрупкость, а Mo и W – уменьшают склонность стали к отпускной хрупкости, особенно эффективен Mo.
- 114 Марчук с.И., Петрущак с.В. Конспект лекций по курсу «Материаловедение»…
- Введение
- Строения материалов
- 2.1 Строение идеальных кристаллов
- 2.2 Дефекты кристаллического строения
- 2.3 Линейные дефектыМарчук с.И., Петрущак с.В. Конспект лекций по курсу «Материаловедение»…
- 2.4 Взаимодействие дефектов кристаллического строения
- 3.1 Упругая и пластическая деформация. Механизм пластической деформации.
- 3.2 Влияние холодной пластической деформации
- 3.3 Влияние нагрева на структуру и свойства деформированного металла.
- 4.1. Движущая сила кристаллизации
- 4.2. Гомогенная кристаллизация
- 4.3. Гетерогенная кристаллизация
- 4.4. Строение металлического слитка
- 4.5 Стеклование и аморфизация
- Двухкомпонентных систем
- 5.1 Диаграмма фазового равновесия сплавов с неограниченной растворимостью в жидком и твердом состоянии
- 5.2 Диаграмма фазового равновесия сплавов с неограниченной растворимостью в жидком и ограниченной растворимостью в твердом состоянии
- 5.2.1 Диаграммы состояния эвтектического типа
- 5.2.3 Двойная диаграмма состояния перитектического типа
- 5.2.4 Диаграммы состояния двух компонентов, образующих промежуточные фазы
- 5.2.5 Двойные диаграммы состояния сплавов полиморфных компонентов и промежуточных фаз
- Железо - углерод
- 6.1 Компоненты
- 6.2 Фазы в системе железо - углерод
- 6.3 Диаграмма состояния системы железо-углерод
- 6.4 Формирование структуры технического железа
- 6.5 Формирование структуры сталей
- 6.6 Влияние углерода и постоянных примесей на структуру и свойства сталей
- 6.7 Классификация и маркировка углеродистых сталей
- 6.8 Формирование структуры чугунов
- 6.8.1 Формирование структуры белых чугунов
- 6.8.2 Влияние скорости охлаждения на формирование структуры чугунов
- 6.8.3 Формирование структуры ковкого чугуна
- 6.8.4 Маркировка чугунов с графитом
- 7.1 Превращения при нагреве сталей
- 7.2 Превращения аустенита при охлаждении
- 7.2.I Распад аустенита в изотермических условиях
- 7.2.2 Распад аустенита в условиях непрерывного охлаждения
- 8.1 Отжиг
- 8.1.1 Отжиг первого рода
- 8.1.2 Отжиг второго рода
- 1 6 4,6 5 2 3 Отжиг 1 рода:
- 8.1.3 Виды отжига второго рода
- 8.2 Закалка стали
- 8.2.1 Способы объемной закалки
- 8.3 Отпуск закаленной стали
- 8.3.1 Превращения в закаленной стали при нагреве (отпуске )
- 8.3.2 Структура и свойства отпущенной стали
- 8.3.3 Виды отпуска
- 8.4 Поверхностное упрочнение стали
- 8.4.1 Поверхностная закалка
- 8.4.1.1 Структура и свойства стали после закалки твч
- 8.4.2 Химико-термическая обработка
- 8.4.2.1 Формирование структуры цементованного изделия
- 8.4.2.2 Термическая обработка после цементации
- Время, ч
- 8.4.3 Азотирование стали
- 9.1 Влияние легирующих элементов на свойства фаз в сталях
- 9.1.2 Влияние легирующих элементов на устойчивость переохлажденного аустенита
- 9.2 Маркировка легированных сталей
- 9.3 Классификация легированных сталей
- 9.4 Конструкционные стали
- 9.4.1 Низколегированные строительные стали
- 9.4.2 Машиностроительные стали
- 9.4.2.1 Цементуемые стали
- 9.4.2.2 Улучшаемые стали
- 9.4.2.3 Рессорно-пружинные стали
- 9.4.2.4 Шарикоподшипниковые стали
- 9.4.2.5 Износостойкие стали
- 9.4.2.6 Коррозионностойкие стали
- 9.5 Инструментальные стали
- 9.5.1 Стали для режущего инструмента
- 9.5.2 Стали для деформирующего инструмента (штамповые стали)
- 9.5.3 Стали для мерительного инструмента
- 9.6 Твердые сплавы
- 10.1 Титан и его сплавы
- 10.2 Алюминий и его сплавы
- 10.3Магний и его сплавы
- 10.4 Медь и ее сплавы
- 11.1 Структура и основные свойства полимеров
- 11.2 Пластические массы
- 11.3 Резина
- 11.4 Стекло
- 11.5 Ситалы.
- 11.6 Керамика
- 11.7 Композиционные материалы