5.6. Акустический метод
Этот метод основан на индикации акустических колебаний, возбуждаемых в контролируемом объекте, грунте или окружающей газовой среде (воздухе) при вытекании пробного газа или жидкости через сквозные дефекты. Молекулы пробного вещества взаимодействуют со стенками сквозных дефектов объекта и генерируют в нем колебания звукового и ультразвукового диапазонов. Эти колебания фиксируются с помощью устанавливаемого на поверхности объекта ультразвукового или виброакустического датчика течеискателя, преобразовывающего ультра звуковые колебания в электрические сигналы, передаваемые далее на показывающие и записывающие устройства течеискателя.
В настоящее время акустические методы течеискания занимают важнейшее место в контроле герметичности трубопроводов. Наиболее совершенными являются акустические корреляционные течеискатели, датчики которых устанавливают на концах контролируемого участка трубы. Акустические колебания, возникающие при истечении технологической среды и регистрируемые датчиками, усиливаются и по кабелю или радиоканалу передаются на программируемый процессор, где вычисляется их взаимная корреляционная функция. К их числу относится отечественный акустический корреляционный течеискатель Т-2001, разработанный фермой ИНКОТЕС, позволяющий определить места утечек на расстоянии до 600 м между датчиками. Положение пика корреляционной функции, визуализируемой на экране течеискателя, определяет местоположение течи. Погрешность определения места утечки - 0,1 м на длине обследуемого участка 100 м. Для контроля герметичности; емкостного технологического оборудования в качестве течеискателей могут использоваться комплекты акустико-эмиссионной аппаратуры, позволяющие путем планарной локации определять координаты течей (см. 10.4).
Генерация вибраций грунта или акустических колебаний окружающей газовой среды при протечке газа или жидкости через течи обусловлена превращением кинетической энергии струи в энергию упругих колебаний. Частотный спектр этих колебаний широк: от десятков герц до сотен килогерц. Он зависит от вида и размеров течи, параметров протекающего через нее вещества (плотности, температуры, давления и др.).
Принцип действия таких течеискателей основан на преобразовании вибрации грунта или колебаний газовой среды (воздуха) в электрические сигналы, частотной и амплитудной селекции этих сигналов.
Рис 5.6. Дистанционный контроль
ионых разрядов и пробоя
изоляции
Непосредственного контакта датчика с объектом при этом не требуется. Например, в переносном акустическом искателе утечек в подземных трубопроводах «АИСТ-4» датчик в процессе контроля последовательно устанавливается на грунт вдоль трассы.
Выпускаются также универсальные приборы, имеющие сменные насадки и позволяющие контролировать колебания объекта как контактным методом, так и дистанционно. К ним относятся, например, ультразвуковые локаторы ULTRAPROBE, предназначенные для определения мест присосов и утечек газовых и жидкостных сред, дефектоскопии подшипников, мест искрения и коронных разрядов в электрооборудовании. На рис. 5.6 приведен рабочий момент дистанционного контроля состояния изоляторов ЛЭП с помощью ультразвукового локатора ULTRAPROBE ™ 2000, снабженного параболической насадкой.
Все современные акустические течеискатели являются компактными переносными приборами, питаемыми от встроенных аккумуляторов. Мощность фиксируемых колебаний растет с увеличением Давления и размера течи и уменьшением расстояния до нее. Чувствительность контроля может быть существенно повышена, если дефектную зону объекта смочить жидкостью, например водой. Вытекающий через течи газ образовывает пузырьки, при разрушении которых образуются мощные акустические импульсы.
Контроль акустическим методом не требует применения специальных пробных веществ и высокой квалификации исполнителей. Недостатком метода является относительно низкая чувствительность и влияние посторонних шумов различного происхождения.
- 1. Задачи, системы и типовая программа технической диагностики
- 1.1. Цель и задачи технической диагностики
- 1.2. Виды дефектов, качество и надежность машин
- 1.3. Восстановление работоспособности оборудования
- 1.4. Виды состояния оборудования, системы технической диагностики
- 1.5. Типовая программа технического диагностирования
- 1.6. Виды неразрушающего контроля, его стандартизация и метрологическое обеспечение
- 2. Методы вибрационной диагностики
- 2.1. Сущность вибродиагностики и ее основные понятия
- 2.2. Средства контроля и обработки вибросигналов
- 2.3. Виброактивность роторов
- 2.4. Виброактивность подшипников и их диагностика
- 2.5. Виброактивность зубчатых передач и трубопроводов
- 2.6. Вибродиагностика и вибромониторинг общих дефектов машинного оборудования
- 3. Оптические методы, визуальный и измерительный контроль
- 3.1. Классификация оптических методов контроля
- 3.2. Особенности визуального контроля
- 3.3. Визуально-оптический и измерительный контроль
- 4. Капиллярный контроль
- 4.1. Физическая сущность капиллярного контроля
- 4.2. Классификация и особенности капиллярных методов
- 4.3. Технология капиллярного контроля
- 4.4. Проверка чувствительности капиллярного контроля
- 5. Течеискание
- 5.1. Термины и определения течеискания, количественная оценка течей
- 5.2. Способы контроля и средства течеискания
- 5.3. Масс-спектрометрический метод
- 5.4. Галогенный и катарометрический методы
- 5.5. Жидкостные методы течеискания
- 5.6. Акустический метод
- 6. Радиационный контроль
- 6.1. Источники ионизирующего излучения
- 6.2. Контроль прошедшим излучением
- 6.3. Радиографический контроль сварных соединений
- 7. Магнитный неразрушающий контроль
- 7.1. Область применения и классификация
- 7.2. Магнитные характеристики ферромагнетиков
- 7.3. Магнитные преобразователи
- 7.4. Магнитная дефектоскопия, магнитопорошковый метод
- 7.5. Дефектоскопия стальных канатов
- 7.6. Метод магнитной памяти
- 7.7. Магнитная структуроскопия
- 8. Вихретоковый, электрический и тепловой виды контроля
- 8.1. Вихретоковый вид контроля
- 8.2. Электрический вид контроля
- 8.3. Тепловой вид контроля
- 9. Ультразвуковой неразрушающии контроль
- 9.1. Акустические колебания и волны
- 9.2. Затухание ультразвука
- 9.3. Трансформация ультразвуковых волн
- 9.4. Способы получения и ввода ультразвуковых колебаний. Конструкция пьезопреобразователей
- 9.5. Аппаратура, методы и технология ультразвукового контроля
- 10. Акустико-эмиссионный метод
- 10.1. Источники акустической эмиссии
- 10.2. Виды сигналов аэ
- 10.3. Оценка результатов аэ контроля
- 10.4. Аппаратура аэ контроля
- 10.5. Порядок проведения и область применения аэ контроля
- 11. Деградационные процессы оборудования и материалов
- 11.1. Деградационные процессы, виды предельных состояний
- 11.2. Характеристики деградационных процессов
- 11.3. Виды охрупчивания сталей и их причины
- 11.4. Контроль состава и структуры конструкционных материалов
- 11.5. Оценка механических свойств материалов
- 11.6. Способы отбора проб металла и получения информации о его свойствах
- 12. Оценка остаточного ресурса оборудования
- 12.1. Методология оценки остаточного ресурса
- 12.2. Оценка ресурса при поверхностном разрушении
- 12.3. Прогнозирование ресурса при язвенной коррозии
- 12.4. Прогнозирование ресурса по трещиностойкости и критерию «течь перед разрушением»
- 12.5. Оценка ресурса по коэрцитивной силе
- 12.6. Оценка ресурса по состоянию изоляции
- 13. Особенности диагностирования типового технологического оборудования
- 13.1. Диагностирование буровых установок
- 13.2. Диагностирование линейной части стальных газонефтепроводов и арматуры
- 13.3. Диагностирование сосудов и аппаратов, работающих под давлением
- 13.4. Диагностирование установок для ремонта скважин
- 13.5. Диагностирование вертикальных цилиндрических резервуаров для нефтепродуктов
- 13.6. Диагностирование насосно-компрессорного оборудования
- Список литературы
- Оглавление