12.6. Оценка ресурса по состоянию изоляции
Состояние изоляционного покрытия является важнейшим фактором, определяющим ресурс оборудования, работающего в агрессивных средах. В первую очередь этот фактор актуален для стальных подземных газо- и нефтепроводов и хранилищ. Считается, что при нарушении целостности изоляции возникает интенсивная коррозия, приводящая к ускоренному исчерпанию ресурса.
Методику оценки остаточного ресурса по состоянию изоляционного покрытия рассмотрим на примере подземных газопроводов (по РД 12-411—01 «Инструкция по диагностированию технического состояния подземных стальных газопроводов»). Оценка состояния изоляционного покрытия производится по следующим параметрам: внешнему виду покрытия (наличие, расположение, площадь сквозных повреждений), характеру покрытия (бугристость, наличие трещин, толщина по периметру, наличие обертки); адгезии (прочности соединения) с основным материалом, величина которой определяется по методикам, предусмотренным приложением Б ГОСТ Р5Н64-98; величине переходного сопротивления между изоляцией и основным металлом.
Критериями предельного состояния изоляции являются ее механические свойства и электропроводимость, наличие отслоений и сквозных повреждений, прочность соединения изоляционного покрытия с металлом. Комплексным интегральным показателем состояния изоляционного покрытия, прогнозируя который можно определить его остаточный ресурс, является величина переходного сопротивления.
Переходным сопротивлением изоляционного покрытия называется электрическое сопротивление единицы площади покрытия в цепи труба-покрытие-электролит. Величина переходного сопротивления R определяется по методу, приведенному в 8.2, или с помощью мегомметра, например типа МП01М или другого с килоомной шкалой и напряжением 100 В. Одновременно определяется удельное электрическое сопротивление фунта в месте расположения диагностируемого участка газопровода.
Состояние изоляционного покрытия оценивается по фактическому переходному сопротивлению Rф в сравнении с критическим (предельным) Rк значением конечного переходного сопротивления труба-грунт. Критическое (предельное) переходное сопротивление на диагностируемом участке газопровода вычисляется решением трансцендентного уравнения
где - удельное электрическое сопротивление грунта, Ом-м; D - наружный диаметр трубопровода, м; S - толщина стенки трубы, м; H - глубина от поверхности земли до верхней образующей трубопровода, м.
Решать уравнение следует методом подбора значения Rк, обеспечивающего равенство левой и правой частей уравнения с точностью до 0,5. Если фактическое значение переходного сопротивления меньше критического (Rф< Rк), делается вывод о полной деградации изоляционного покрытия на данном участке газопровода. Если 2RК > Rср > Rк , то покрытие находится на пределе защитных свойств. Если Rф>2RК и имеется только пассивная защита газопровода, то рассчитывается остаточный срок службы изоляционного покрытия.
Расчет остаточного срока службы изоляционного покрытия по переходному сопротивлению проводится по формуле
где - постоянная времени старения г:
где Тф — фактическое время эксплуатации газопровода до начала диагностирования, с; Rо - переходное сопротивление изоляционного покрытия на участке газопровода в момент завершения его строительства и сдачи в эксплуатацию, принимается по результатам приемо-сдаточных испытаний газопровода для данного участка либо используется минимальное нормативное значение по РД 12-411-01, принимаемое по табл. 12.2.
Таблица 12.2
Основа покрытия | Переходное сопротивление Во, Ом м2 |
Битумные мастики | 5· 104 |
Полимерные рулонные материалы | 105 |
Полиэтилен экструдированный | 3·105 |
Стеклоэмаль | 103 |
При истечении расчетного остаточного срока службы Тост на продиагностированном участке газопровода ожидается снижение переходного сопротивления изоляционного покрытия за допустимые пределы и должно быть принято решение о дальнейших противокоррозийных мероприятиях, в том числе с применением пассивной и активной электрохимической защиты. При экономической нецелесообразности дополнительных защитных мероприятий остаточный срок службы газопровода рассчитывается с учетом прогнозируемого уменьшения толщины стенок труб в результате интенсивной коррозии, обусловленной агрессивностью среды, исключая защитные свойства изоляции.
- 1. Задачи, системы и типовая программа технической диагностики
- 1.1. Цель и задачи технической диагностики
- 1.2. Виды дефектов, качество и надежность машин
- 1.3. Восстановление работоспособности оборудования
- 1.4. Виды состояния оборудования, системы технической диагностики
- 1.5. Типовая программа технического диагностирования
- 1.6. Виды неразрушающего контроля, его стандартизация и метрологическое обеспечение
- 2. Методы вибрационной диагностики
- 2.1. Сущность вибродиагностики и ее основные понятия
- 2.2. Средства контроля и обработки вибросигналов
- 2.3. Виброактивность роторов
- 2.4. Виброактивность подшипников и их диагностика
- 2.5. Виброактивность зубчатых передач и трубопроводов
- 2.6. Вибродиагностика и вибромониторинг общих дефектов машинного оборудования
- 3. Оптические методы, визуальный и измерительный контроль
- 3.1. Классификация оптических методов контроля
- 3.2. Особенности визуального контроля
- 3.3. Визуально-оптический и измерительный контроль
- 4. Капиллярный контроль
- 4.1. Физическая сущность капиллярного контроля
- 4.2. Классификация и особенности капиллярных методов
- 4.3. Технология капиллярного контроля
- 4.4. Проверка чувствительности капиллярного контроля
- 5. Течеискание
- 5.1. Термины и определения течеискания, количественная оценка течей
- 5.2. Способы контроля и средства течеискания
- 5.3. Масс-спектрометрический метод
- 5.4. Галогенный и катарометрический методы
- 5.5. Жидкостные методы течеискания
- 5.6. Акустический метод
- 6. Радиационный контроль
- 6.1. Источники ионизирующего излучения
- 6.2. Контроль прошедшим излучением
- 6.3. Радиографический контроль сварных соединений
- 7. Магнитный неразрушающий контроль
- 7.1. Область применения и классификация
- 7.2. Магнитные характеристики ферромагнетиков
- 7.3. Магнитные преобразователи
- 7.4. Магнитная дефектоскопия, магнитопорошковый метод
- 7.5. Дефектоскопия стальных канатов
- 7.6. Метод магнитной памяти
- 7.7. Магнитная структуроскопия
- 8. Вихретоковый, электрический и тепловой виды контроля
- 8.1. Вихретоковый вид контроля
- 8.2. Электрический вид контроля
- 8.3. Тепловой вид контроля
- 9. Ультразвуковой неразрушающии контроль
- 9.1. Акустические колебания и волны
- 9.2. Затухание ультразвука
- 9.3. Трансформация ультразвуковых волн
- 9.4. Способы получения и ввода ультразвуковых колебаний. Конструкция пьезопреобразователей
- 9.5. Аппаратура, методы и технология ультразвукового контроля
- 10. Акустико-эмиссионный метод
- 10.1. Источники акустической эмиссии
- 10.2. Виды сигналов аэ
- 10.3. Оценка результатов аэ контроля
- 10.4. Аппаратура аэ контроля
- 10.5. Порядок проведения и область применения аэ контроля
- 11. Деградационные процессы оборудования и материалов
- 11.1. Деградационные процессы, виды предельных состояний
- 11.2. Характеристики деградационных процессов
- 11.3. Виды охрупчивания сталей и их причины
- 11.4. Контроль состава и структуры конструкционных материалов
- 11.5. Оценка механических свойств материалов
- 11.6. Способы отбора проб металла и получения информации о его свойствах
- 12. Оценка остаточного ресурса оборудования
- 12.1. Методология оценки остаточного ресурса
- 12.2. Оценка ресурса при поверхностном разрушении
- 12.3. Прогнозирование ресурса при язвенной коррозии
- 12.4. Прогнозирование ресурса по трещиностойкости и критерию «течь перед разрушением»
- 12.5. Оценка ресурса по коэрцитивной силе
- 12.6. Оценка ресурса по состоянию изоляции
- 13. Особенности диагностирования типового технологического оборудования
- 13.1. Диагностирование буровых установок
- 13.2. Диагностирование линейной части стальных газонефтепроводов и арматуры
- 13.3. Диагностирование сосудов и аппаратов, работающих под давлением
- 13.4. Диагностирование установок для ремонта скважин
- 13.5. Диагностирование вертикальных цилиндрических резервуаров для нефтепродуктов
- 13.6. Диагностирование насосно-компрессорного оборудования
- Список литературы
- Оглавление