7.1. Область применения и классификация
Магнитное поле является материальным продолжением тела за пределы его молекулярной структуры и обнаруживается по многочисленным проявлениям. Наиболее известными из них являются его индукционное и электрическое действия, которые можно измерить и использовать для целей неразрушающего контроля.
Магнитный вид неразрушающего контроля применяют в основном для изделий из ферромагнитных материалов. Магнитные характеристики таких материалов являются информативными параметрами, так как зависят от их физико-механических свойств, химического состава, вида механической и термической обработки, а также от размеров и сплошности изделий.
К числу информативных параметров, используемых в магнитном неразрушающем контроле (НК), относятся: коэрцитивная сила Нс, намагниченность М, остаточная магнитная индукция Вr начальная или максимальная магнитная проницаемость (I, параметры петли гистерезиса В(Н), параметры скачков Баркгаузена, параметры магнитооптического эффекта и др. (см. табл. 1.2).
По способу получения первичной информации различают следующие методы магнитного контроля:
-
магнитопорошковый (МП), основанный на регистрации магнитных полей рассеяния над дефектами с использованием в качестве индикатора ферромагнитного порошка или магнитной суспензии;
-
магнитографический (МГ), основанный на регистрации магнитных полей рассеяния с использованием в качестве индикатора ферромагнитной пленки;
-
феррозондовый (ФЗ), основанный на измерении напряженности магнитного поля феррозондами;
-
эффекта Холла (ЭХ), основанный на регистрации магнитных полей датчиками Холла;
-
индукционный (И), основанный на регистрации магнитных полей рассеяния по величине или фазе индуктируемой ЭДС;
-
пондеромоторный (ПМ), основанный на регистрации силы отрыва (притяжения) постоянного магнита или сердечника электромагнита от контролируемого объекта;
-
магниторезисторный (МР), основанный на регистрации магнитных полей рассеяния магниторезисторами;
-
магнитооптический (МП), основанный на визуализации доменной структуры материала с помощью феррит-гранатовой пленки с зеркальной подложкой.
С помощью перечисленных методов можно осуществить контроль сплошности (МП, МГ, ФЗ, ЭХ, И, МР, МО), размеров (ФЗ, ЗХ И, ПМ), структуры и физико-механических свойств (ФЗ, ЭХ, Й, МО).
Ниже рассматриваются физическая сущность магнитного контроля и некоторые из методов, наиболее часто применяемые в практике технического диагностирования объектов нефтегазовой промышленности.
- 1. Задачи, системы и типовая программа технической диагностики
- 1.1. Цель и задачи технической диагностики
- 1.2. Виды дефектов, качество и надежность машин
- 1.3. Восстановление работоспособности оборудования
- 1.4. Виды состояния оборудования, системы технической диагностики
- 1.5. Типовая программа технического диагностирования
- 1.6. Виды неразрушающего контроля, его стандартизация и метрологическое обеспечение
- 2. Методы вибрационной диагностики
- 2.1. Сущность вибродиагностики и ее основные понятия
- 2.2. Средства контроля и обработки вибросигналов
- 2.3. Виброактивность роторов
- 2.4. Виброактивность подшипников и их диагностика
- 2.5. Виброактивность зубчатых передач и трубопроводов
- 2.6. Вибродиагностика и вибромониторинг общих дефектов машинного оборудования
- 3. Оптические методы, визуальный и измерительный контроль
- 3.1. Классификация оптических методов контроля
- 3.2. Особенности визуального контроля
- 3.3. Визуально-оптический и измерительный контроль
- 4. Капиллярный контроль
- 4.1. Физическая сущность капиллярного контроля
- 4.2. Классификация и особенности капиллярных методов
- 4.3. Технология капиллярного контроля
- 4.4. Проверка чувствительности капиллярного контроля
- 5. Течеискание
- 5.1. Термины и определения течеискания, количественная оценка течей
- 5.2. Способы контроля и средства течеискания
- 5.3. Масс-спектрометрический метод
- 5.4. Галогенный и катарометрический методы
- 5.5. Жидкостные методы течеискания
- 5.6. Акустический метод
- 6. Радиационный контроль
- 6.1. Источники ионизирующего излучения
- 6.2. Контроль прошедшим излучением
- 6.3. Радиографический контроль сварных соединений
- 7. Магнитный неразрушающий контроль
- 7.1. Область применения и классификация
- 7.2. Магнитные характеристики ферромагнетиков
- 7.3. Магнитные преобразователи
- 7.4. Магнитная дефектоскопия, магнитопорошковый метод
- 7.5. Дефектоскопия стальных канатов
- 7.6. Метод магнитной памяти
- 7.7. Магнитная структуроскопия
- 8. Вихретоковый, электрический и тепловой виды контроля
- 8.1. Вихретоковый вид контроля
- 8.2. Электрический вид контроля
- 8.3. Тепловой вид контроля
- 9. Ультразвуковой неразрушающии контроль
- 9.1. Акустические колебания и волны
- 9.2. Затухание ультразвука
- 9.3. Трансформация ультразвуковых волн
- 9.4. Способы получения и ввода ультразвуковых колебаний. Конструкция пьезопреобразователей
- 9.5. Аппаратура, методы и технология ультразвукового контроля
- 10. Акустико-эмиссионный метод
- 10.1. Источники акустической эмиссии
- 10.2. Виды сигналов аэ
- 10.3. Оценка результатов аэ контроля
- 10.4. Аппаратура аэ контроля
- 10.5. Порядок проведения и область применения аэ контроля
- 11. Деградационные процессы оборудования и материалов
- 11.1. Деградационные процессы, виды предельных состояний
- 11.2. Характеристики деградационных процессов
- 11.3. Виды охрупчивания сталей и их причины
- 11.4. Контроль состава и структуры конструкционных материалов
- 11.5. Оценка механических свойств материалов
- 11.6. Способы отбора проб металла и получения информации о его свойствах
- 12. Оценка остаточного ресурса оборудования
- 12.1. Методология оценки остаточного ресурса
- 12.2. Оценка ресурса при поверхностном разрушении
- 12.3. Прогнозирование ресурса при язвенной коррозии
- 12.4. Прогнозирование ресурса по трещиностойкости и критерию «течь перед разрушением»
- 12.5. Оценка ресурса по коэрцитивной силе
- 12.6. Оценка ресурса по состоянию изоляции
- 13. Особенности диагностирования типового технологического оборудования
- 13.1. Диагностирование буровых установок
- 13.2. Диагностирование линейной части стальных газонефтепроводов и арматуры
- 13.3. Диагностирование сосудов и аппаратов, работающих под давлением
- 13.4. Диагностирование установок для ремонта скважин
- 13.5. Диагностирование вертикальных цилиндрических резервуаров для нефтепродуктов
- 13.6. Диагностирование насосно-компрессорного оборудования
- Список литературы
- Оглавление