8.2 Составы расширяющихся тампонажных цементов
В строительной практике применяются различные виды расширяющихся цементов, главным образом на сул ьфоа л то м и на тно й основе. Известны водонепроницаемый расширяющийся цемент (ВРЦ) и напрягающий цемент (НЦ). ВРЦ изготовляется путем тщательного смешения или совместного помола глиноземистого цемента (68—71%), полуводного гипса (20—22 %) и высокоосновного гидроалюмината кальция 4СаО • А1203 • 13Н20 (10— 11%). Высокоосновный гидроалюминат находится в продукте, особо получаемом из смеси глиноземистого цемента с гидрат- ной известью. НЦ же изготовляют путем тонкого совместного помола портландцементного клинкера, глиноземистого шлама (или глиноземистого цемента) и гипсового камня, обычно в соотношение 70: 15: 15.
Расширение ВРЦ и НЦ происходит вследствие образования в них вначале моногидросульфоалюмината кальция, а затем высокосульфатной формы гидросульфоалюмината кальция ЗСаО • А1203 * 3CaS04 * 31 (32)Н20. Последний, образующийся через 1—3 сут твердения расширяющегося цемента, т. е. когда камень еще не затвердел, способствует равномерному расширению всей цементной системы.
Гипсоглиноземистый расширяющийся цемент медленнее схватывается, чем ВРЦ. Он получается в результате совместного помола природного двухводного гипса и продуктов обжига до плавления или спекания сырьевой смеси из боксита и известняка в соотношении 70:30. Для его изготовления применяют также высокоглиноземистые шлаки, содержащие не более 11 % Si02 и 38—41 % СаО, В составе глиноземистой части вяжущего вещества должен преобладать моноалюминат кальция, а содержание высокоосновных алюминатов кальция должно быть минимальным. Относительная величина линейного расширения через 28 сут твердения в воде должна быть не менее 0,3 % и не более 1 %.
Известен расширяющийся цемент на основе портландцемента. Его состав 60—65 % портландцемента, 5—7 % глиноземистого цемента, 7—10% двухводного гипса, 20—25 % гидравлической добавки. Расширение образцов при твердении в воде в течение суток составляет 0,15%, а через 28 сут — до 0,3— 1 %. Начало схватывания без специальной корректировки наступает через 30 мин.
В гидротехническом и шахтном строительстве, в нефтегазовой промышленности используется несколько видов специальных расширяющихся тампонажных цементов. Расширение большинства таких цементов вызывается образованием и ростом при твердении кристаллов, гидросульвоалюмината кальция. В последние годы используется также расширение при гидратации оксидов кальция и магнии.
Гипсоглиноземистый цемент представляет собой продукт совместного помола высокоглиноземистого шлака и двухводного гипса, взятых в соотношении 3:1.
Ориентировочные параметры тампонажного раствора (при затворении этого вида цемента на водопроводной воде) при 22 °С
(1.65) 73
8.2 Составы расширяющихся тампонажных цементов 79
9.2 Синтетические смолы 87
12.14Проектирование составов облегченных тампонажных цементов и растворов 136
12.2.2Утяжеленный цемент для умеренно высоких температур 138
12.23Утяжеленные тампонажные цементно- и шлако-баритовые растворы 146
12.2.4Утяжеленные тампонажные растворы на основе шлаков цветной металлургии 148
12.3.2 Приготовление засоленных тампонажных растворов 153
12.3.3 Влияние солей на реологические свойства тампонажных растворов 155
Эффективный замедлитель структурообразования тампонажных растворов, насыщенных б.ишофитом,— декстрин при температурах до 90 °С. Большинство же других добавок при повышенных температурах не позволяет получить тампонажные растворы с замедленными сроками схватывания. 157
s = (11.3) 159
12.4.3Нефтецементные растворы 162
ЦЕМЕНТИРОВОЧНЫЕ АГРЕГАТЫ И ЦЕМЕНТНОСМЕСИТЕЛЬНЫЕ МАШИНЫ 179
Рис.14.1 Схемы расстановки н обвязкн оборудования при цементировании скважин: 180
Рис. 14.2. Цементировочный aгpeгaт ЦА-320М: 183
Рис. 14..3 Цементировочный насос 9Т; 183
При креплении нефтяных и газовых скважин чаще применяют смесь тампонажного портландцемента и гипсоглиноземи- стого в соотношениях (75—85 %) : (25—15 %). В таких случаях при водоцементном отношении 0,45 и температура 22 °С начало схватывания задерживается до 2,5—4 ч, прочностные показатели аналогичны тампонажным цементам, а расширение образцов достигает 2%. С повышением температуры до 40 °С сроки схватывания сокращаются. Камень из этих цементов отличается повышенной коррозионной устойчивостью.
Гипсоглиноземистый цемент выпускается в промышленном масштабе Пашийским цементным заводом.
Тампонажный цемент с добавками магнезита и доломита представляет собой смесь тампонажного портландцемента с магнезитом (MgC03) или доломитом (СаСо3-MgCOs), обожженными при температуре 700—900 °С. Добавки к цементам обожженных магнезита и доломита соответственно 5—10 и 10—20 % обеспечивают расширение цемейт- ного камня в течение 48 ч до 0,5 % за счет гидратации оксидов MgO и смеси MgO + СаО в цементном камне,
Расширяющиеся тампонажные цементы (РТЦ) с большой величиной расширения получают введением добавок молотых негашеной извести и периклаза, обожженных при определенных температурах.
В составе цемента для низких и нормальных температур предпочтительно применять известь сорта «медленногасящаяся», измельченную до удельной поверхности s = 250 350 м2/кг.
В зависимости от качества сырья, условий обжига и хранения негашеная известь может содержать различное количество активного СаО. При содержании его в цементе до 10 % и В/Т = 0,4 0,5 наблюдается линейная зависимость расширения и прочности от содержания СаО, переходящая затем в степенную. В области линейной зависимости (т. е. до 10% активного СаО), несмотря на большую величину расширения, сплошность структуры цементного камня не нарушается и сохраняется его высокая прочность. При больших добавках расширяющего компонента расширение настолько велико, что структура цементного камня даже на ранней стадии развития не может самозаращивать микроразрывы и прочность камня резко снижается. Поэтому состав расширяющегося цемента следует подбирать с учетом содержания активного СаО в негашеной извести.
Ранняя прочность цементного камня из расширяющегося цемента несколько ниже прочности камня из исходного тампо- нажного цемента. Однако с течением времени в ходе твердения разница в прочности камней из расширяющегося и исходного цементов сокращается. Повышение водосодержания раствора уменьшает расширение.
Промышленная негашеная известь, которая представляет собой в основном мягкожженый оксид кальция, гидратируется с образованием тонкодисперсного Са(ОН)г» имеющего достаточно высокую структурообразующую способность, что несколько ускоряет загустевание цементного раствора. Цементный раствор из расширяющегося цемента с негашеной известью имеет характерную форму кривой загустевания — участок низкой начальной консистенции быстро сменяется ростом консистенции, вызванным гидратацией оксида кальция. Вслед за этим наступает непродолжительный инкубационный период, в течение которого консистенция по абсолютному значению выше, чем у обычного тампонажного цемента. После инкубационного периода наступает процесс загустевания, вызываемый интенсивной гидратацией силикатных минералов и протекающий так же, как у обычных тампонажных портландцементов. Время загустевания у РТЦ несколько меньше, чем у исходного тампонажного цемента.
Для получения расширения в пределах 16—20% от момента затворения (3—7% от начала схватывания), что значительно больше, чем у других видов расширяющихся цементов, но безопасно для свойств цементного камня, необходимо на 100 массовых долей портландцемента ввести 10—20 массовых долей молотой негашеной извести. Количество введенной извести зависит от сроков схватывания исходного портландцемента, ее активности и скорости гашения, а также от условий применения цемента.
При умеренно высоких температурах проблема заключается в сохранении необходимой величины расширения и получении достаточного времени сохранения прокачиваемости раствора при повышенной температуре. С повышением температуры величина расширения, фиксируемого после начала схватывания, уменьшается, однако при 75 °С оксид кальция еще можно применять в качестве расширяющей добавки, особенно если выбирать известь с меньшей скоростью гашения. При получении больших партий извести, предназначенной для добавления в тампонажные цементы для умеренно высоких температур, можно ввести изменения в технологический процесс обжига специально с целью получения пережженной извести. В эти цементы целесообразно вводить измельченный кварцевый песок, добавка которого способствует замедлению за густев а ния и схватывания цементного раствора, а также повышению прочности в процессе твердения в результате реакции между СаО и Si02.
При температуре выше 75 °С процесс гидратации извести идет настолько быстро, что значительная часть оксида кальция превращается в гидроксид еще до появления структуры, не вызывая расширения. Однако если частицы свободного оксида кальция заключены внутри частиц клинкера или пылевидной золы, то он гидратируется значительно медленнее, чем оксид кальция, добавляемый в виде негашеной извести, полученной при той же температуре обжига.
Портландцементный клинкер, содержащий свободный оксид кальция, может быть получен двумя способами: кратковременным обжигом при температуре 1100—1350 °С сырьевой смеси, составленной с расчетом на получение не менее 60 % трехкаль- циевого силиката (остаток свободной извести в клинкере в пределах 3—15 %), и обычным обжигом сырьевой смеси с КН!>1,
На основе таких клинкеров могут быть получены расширяющиеся цементы для скважин с температурой от 50 до 120 °С. Клинкеры с КН> 1 можно применять при температуре не менее 80 °С.
Преимущество расширяющихся тампонажных цементов на базе клинкера, содержащего свободный СаО, состоит в том, что наряду с обеспечением большой величины расширения при высоких температурах значительно упрощается технологический процесс изготовления такого цемента. Он .может быть легко получен на любом из цементных заводов без существенных изменений технологических процессов. Такие цементы обладают лучшей сохранностью, чем с добавкой молотой негашеной извести. Следует добавить, что предпочтительно применять этот клинкер в составе термостойкого песчанистого цемента.
Экономически эффективный способ получения расширяющихся цементов на основе оксида кальция заключается во введении добавки пылевидных топливных зол, содержащих свободный оксид кальция. Такие золы остаются после сжигания некоторых видов углей и сланцев в пылеугольных топках на электростанциях, например, Украины и Прибалтики.
Для скважин с более высокими температурами целесообразно применять химически менее активную оксидную расширяющуюся добавку — оксид магния. Если оксид магния обжигать при 1200—1300 °С, то он может служить хорошей расширяющей добавкой в цементы для температур от 120 до 180 °С.
При температурах выше 160 °С расширяющей добавкой может служить оксид магния, обожженный при еще более высоких температурах. В металлургической промышленности для футеровки печей широко применяют металлургический магнезитовый порошок, полученный обжигом магнезита при 1500— 1600 °С и содержащий более 50 % MgO.
Таблица 1.24. Свойства высокотемпературных расширяющихся цементов
Растекае- | Г» С | Время | Прочность при сжатии, МПа, через период времени, сут | ||
мость, см | загустевания» ч-мин | 2 | 7 | 28 |
в/ц Расширение ,
Шлако-пеечаный цемент с 20 % хроматного шлама» s — 320 м2/кг
0,5 | 18 | 120 | 3—30 | 5,0 | 19,8 | 28,0 | 7,2 |
0,5 | 18 | 120 | 2—20 | 18,0 | 24,5 | 33,0 | 7,6 |
| 7-БКЦ | с 5 % | магнезитового порошка, а •= | 380 м2/кг | |||
0,7 | 20 | 160 | 2—00 | 5,5 | 20,5 | 22,5 | 8,3 |
0,7 | 20 | 200 | 1—30 | 14,0 | 20,0 | 35,5 | 10,5 |
Оксид магния в магнезитовом порошке находится в виде периклаза, высокая температура обжига которого обусловливает его низкую реакционную способность. Добавка MgO в виде так называемого «мертвожженного» периклаза оказывается подходящей расширяющей добавкой для высокотемпературных тампонажных цементов (температура применения выше 180 °С). Такой периклаз содержится в количестве до 40 % в некоторых металлургических шлаках, которые также могут быть применены в качестве расширяющей добавки. Оксид магния, обожженный при 1200 °С, содержится, например, в количестве до 36% в хроматном шламе - отходе от переработки хромитовых руд.
Естественно, что в качестве вяжущей основы для высокотемпературных расширяющихся тампонажных цементов необходимо применять температуростойкие медленносхватывающиеся цементы: шлакопесчаный цемент, БКЦ или цемент на основе саморассыпающегося шлака от производства рафинированного.
- Тампонажные смеси
- 1.1 Функции тампонажных смесей
- 1.2 Требования к тампонажным смесям
- 1.3 Способы упрочнения и кольматации стенок скважин. Способы тампонирования
- Г л а в а 2. Состав цементных растворов
- 2.1 Цементы
- 2.2 Разновидности портландцемента
- 2.3 Механизм твердения цементов
- 2.4 Жидкости затворения. Добавки. Буферные жидкости
- 2.5 Расчет количества компонентов цементного раствора
- 3.1 Свойства цементного раствора
- 3.2 Регулирование параметров цементных растворов
- 4.1 Подготовка образцов к определению параметров цементного камня
- 4.2 Кинематика и термодинамика изменения свойств
- 4.3 Прочность ценетного камня
- 4.4 Сцепляемость цементного камня с горной породой
- 4.5 Усадка цементного камня при твердени
- 4.6 Неконтролируемое самопроизвольное расширение
- 4.7 Проникаемость цементного камня
- 4.8 Коррозионная стойкость цементного камня
- 4.9 Термостойкость цементного раствора и камня
- 5.1 Гельцементированные растворы
- 5.2 Глиноцементные растворы
- Г л а в а 6. Коррозионностойкие тампонажные цементы
- 7.1 О термостойкости цементов
- 7.2 Цементно – кремнемнеземистые смеси
- 7.3 Шлакопесчаные цементы
- 7.4 Белито-кремнеземистый цемент (бкц)
- 7.5 Известково-кремнеземистые цементы
- Глава 8 расширяющиеся тампонажные цементы
- 8.1 Способы регулирования процесса расширения.
- 8.2 Составы расширяющихся тампонажных цементов
- Глава 9. Органические и органо – минеральные тампонажные смеси
- 9.1 Полиакриломид – цементные, лигнасо- цементные и цементно-латексные тампонажные смеси.
- 9.2 Синтетические смолы
- 9.3 Тампонажные смеси на основе карбамидных смол
- 9.4 Тампонажные смеси на основе сланцевых смол
- 9.5 Смологлинистые растворы
- 9.6 Полимерные тампонажные смеси
- 9.7 Тампонажные смеси на основе латексов
- 9.8 Смоло-полимерные смеси
- 9.8Другие полимер-минеральные тампонажные смеси
- 10.1 Битумы
- 10.2 Битумные эмульсии
- 10.3 Взаимодействие битумов с горными породами
- 10.4 Добавки к битумам
- 10.5 Цементно-битумные смеси
- 11.1 Механизм упрочнения и кольматации горных пород
- 11.2 Способы силикатизации
- 11.3 Способы однорастворной силикатизации
- 11.4 Взаимодействие силикатных растворов с горными породами
- 12.1 Облегченные тампонажные цементнты и растворы
- 12.1.1 Способы снижения плотности тампонажных растворов
- 12.1.2 Гельцементные растворы
- 12.1.3 Цементные растворы с кремнеземнистыми облегчающими добавками
- 12.14Проектирование составов облегченных тампонажных цементов и растворов
- 12.2.1 Утяжеленные тампонажные цементы и растворы
- 12.2.2Утяжеленный цемент для умеренно высоких температур
- 12.2.2 Утяжеленные шлаковые цементы
- 12.23Утяжеленные тампонажные цементно- и шлако-баритовые растворы
- 12.2.4Утяжеленные тампонажные растворы на основе шлаков цветной металлургии
- Из свинцового шлака
- Совместного помола свинцового шлака и песка при различных температурах и давлении 50 мп а
- 12.3 Тампонажные растворы, затворенные на концентрированных растворах солей
- 12.3.1 Растворение соленосных отложений
- 12.3.2 Приготовление засоленных тампонажных растворов
- 12.3.3 Влияние солей на реологические свойства тампонажных растворов
- 12.3.4 Водоотдача засоленных тампонажных растворов
- 12.3.5 Сцепление цементного камня с солями
- 12.4 Прочие модифицированные тампонажные материалы.
- 12.4.1Дисперсно-армированные тампонажные цементы
- 12.4.2Обращенные нефтеэмульсионные тампонажные растворы
- 12.4.3Нефтецементные растворы
- 13.1 Общие сведения.
- 13.2 Тампонажные растворы на основе вяжущих веществ
- 13.3 Тампонажные пасты
- Глава 14.
- 14.1 Цементировочнве агрегаты
- 14.2 Цементировочные агрегаты в специальном исполнении
- Режимы работы цементировочного агрегата ца-320а
- 14.3 Совершенствование цементировочных агрегатов
- 14.4 Цементно-смесительные машины
- Режимы работы машины см-4м для получения раствора плотностью 1,85 г/см3
- 15.1 Оборудование
- 15.2 Тампонажные снаряды
- 15.3 Технология тампонирования
- 15.4 Технология тампонирования однорастворными тампонажными месями
- 15.5 Технология тампонирования двухрастворными смесями
- 15.6 Тампонирование гидромониторными струями и гидроимпульсным методом
- 15.7 Технология тампонирования сухими смесями
- 15.8 Технология тампонирования кавернозной зоны
- 15.9 Ликвидациооное тампонирование
- Глава 16 Тампонажные снаряды
- 16.1 Тампонажный снаряд ту-7
- 16.2 Тампонажный снаряд кст
- 16.3 Тампонажный комплект сс и пм
- 16.4 Тампонажное устройство ту-2
- 16.5 Тампонажный снаряд при бурении комплексами сск (сот)
- 16.6 Технология проведения тампонажных работ
- 17.1 Техника безопасности при изготовлении и использовании тампонажных смесей
- 17.2 Природоохранные мероприятия при использовании тампонажных смеей
- Библиографический список