2.2.1.Кинематические схемы
Поточные методы обеспечивают высокую производительность и проще поддаются автоматизации. Однако поточные методы применимы к серийному производству, доля которого при изготовлении сварных изделий невелика. Кроме того, оснащение автоматических линий требует создания специального оборудования, проектирование и изготовление которого занимают много времени и трудно поддаются модернизации при изменении выпускаемого изделия.
Развитие робототехники обещает более универсальный путь автоматизации, включая и мелкосерийное производство, потому что при смене изготавливаемой детали можно использовать тот же робот, изменив программу его работы. Применение роботов позволит повысить качество изделий, освободить человека от однородной, утомительной работы, перейти на трехсменную работу. Хотя создание роботов и их серийное производство также требуют больших усилий, однако здесь нет такого разнообразия, как при создании специальных агрегатов автоматических линий. Робототехника, по-видимому, станет, основным направлением развития автоматизации сварочного производства и экономии живого труда.
Наиболее просто роботизации поддаются сборка и сварка узлов с нахлесточными соединениями, свариваемыми контактной сваркой, сложнее — с тавровыми и угловыми соединениями, выполняемыми дуговой сваркой, и еще сложнее — со стыковыми соединениями, выполняемыми дуговой сваркой. Использование роботов при сварке предъявляет специфические требования к технологии изготовления, порядку сборки и сварки, а так же требует создания оснастки, обеспечивающей стабильность положения линии сопряжения свариваемых элементов. Возможности использования промышленных роботов в технологических процессах определяются размерами и формой рабочего пространства, точностью позиционирования, скоростью перемещения, числом степеней подвижности, особенностями управления и др. В таблице 1. даны условные обозначения характерных элементов кинематических схем промышленных роботов. Число степеней подвижности характеризует возможности позиционирования рабочего органа. Для перемещения неориентированных в пространстве предметов достаточно трех степеней подвижности, а для полной пространственной ориентации — шести. Для выполнения сварных швов дуговой сваркой в общем случае необходимо иметь пять степеней подвижности сварочного инструмента.
Звено |
|
Неподвижное закрепление звена |
|
Цилиндрическое соединение звеньев |
|
Жесткое соединение звеньев |
|
Подвижное соединение с перемещение вдоль прямолинейных направляющих |
|
Винтовое подвижное соединение |
|
Плоское шарнирное соединение |
|
Шаровой шарнир с пальцем |
|
Шаровой шарнир |
|
Захватное устройство с зажимными элементами: подвижными неподвижными |
|
Таблица 1. Условные обозначения элементов структурных кинематических схем промышленных роботов
Обычно три степени подвижности обеспечивает базовый механизм робота ( таблица 2), а еще две степени добавляет механическое устройство: кисть работа, на которой крепится сварочная головка; клещи для контактной сварки или захват.
Базовый механизм робота может быть выполнен в прямоугольной, цилиндрической, сферической и ангулярной (антропоморфной) системах координат (таблица 2). Система координат базового механизма определяет конфигурацию и габариты рабочего пространства робота, в пределах которого возможно управляемое перемещение исполнительного органа робота.
прямоугольная |
|
|
цилиндрическая |
|
|
сферическая |
|
|
ангулярная |
|
|
Таблица 2 Основные схемы базовых механизмов роботов
Сварочный робот "Asea I Rb-6" (Швеция) (рис.13,а), выполненный в ангулярной системе координат, применяется как для дуговой, так и для контактной точечной сварки в зависимости оттого, что прикреплено к руке робота: сварочная горелка или клещи для контактной сварки. Для перемещения рабочего инструмента используются мотор-редукторы 2, 4, 17 и 20. Применение электропривода в сочетании с жесткой механической конструкцией обеспечивает малую погрешность позиционирования (± 0,2 мм). Поворот руки вокруг вертикальной оси осуществляется от мотор-редуктора 2, установленного на основании 1, через волновую беззазорную передачу 3, выходное колесо которой связано с поворотным корпусом 5. Мотор-редуктор 4 через шариковую винтовую пару 6 поворачивает тягу 7, образующую со звеньями 9, 10 и 12 шарнирный параллелограмм, обеспечивающий поворот звена 12 вокруг оси кривошипа 13. Наклон звена 10 обеспечивается мотор-редуктором 20, движение от которого через шариковую винтовую пару 18 подается на кривошип 19. Для разгрузки приводов предусмотрен уравновешивающий груз 8. Внутри звеньев руки размещены тяги 11 и 14 и система кривошипов 13, 15 и 19, образующих систему передач, которые обеспечивают повороты рабочего инструмента вокруг оси I (кривошипом 15) и на угол а (беззазорной конической передачей 16). Движения звеньев по всем степеням подвижности контролируются датчиками положения. Система управления — позиционная.
Робот (рис.13,б) для дуговой сварки фирмы "Shin Meiwa" (Япония), имеющий сварочную горелку и механизм подачи электродной проволоки, расположенный на устройстве горизонтального перемещения горелки по оси у, имеет базовый механизм, выполненный в прямоугольной системе координат.
Рис.13а, Сварочный робот “Asea I Rb-6” б, сварочный робот “Shin Meiwa”
- Реферат
- Введение
- Распределение учебных часов по разделам и видам занятий
- 1.Заготовительное производство
- 1.1.Операции заготовительного производства
- 1.2.Разметка
- 1.3.Резка и обработка кромок
- 1.4.Гибка
- 2. Cборочно-сварочные операции
- 2.1.Cборочно-сварочные приспособления
- 2.1.1.Элементы сборочных приспособлений
- 2.2.Роботы
- 2.2.1.Кинематические схемы
- 2.2.2.Роботизированные технологические комплексы
- 3.Балки
- 3.1.Сборка и сварка двутавровых балок
- 3.2.Непрерывное производство сварных балок
- 3.3.Элементы промышленных зданий
- 3.4.Мостовые краны
- 4.Стропильные фермы
- 4.1.Изготовление ферм
- 4.2.Конструкции пролетных строений
- 5.Плавучие буровые установки с опорными колоннами
- 5.1.Плавучие полупогружные буровые установки (ппбу)
- 6.Изготовление арматурных изделий
- 7.Соединение сборочных элементов железобетонных конструкций
- 8.Негабаритные сооружения и резервуары
- 8.1.Рулонирование листовых конструкций
- 8.2.Типы вертикальных цилиндрических резервуаров
- 8.3.Монтаж днищ вертикальных цилиндрических резервуаров
- 8.4.Монтаж стенок вертикальных цилиндрических резервуаров
- 8.5.Заготовки для сферических резервуаров
- 8.6.Сварка сферических резервуаров
- 8.7.Сооружение кожуха домны
- 8.8.Цементные печи
- 9.Сосуды, работающие под давлением
- 9.1.Тонкостенные сосуды
- 9.2.Сосуды со стенкой средней толщины
- 9.2.1.Сварка арматуры
- 9.3.Толстостенные сосуды
- 9.5.Многослойные сосуды
- 10.Корпусное оборудование аэс
- 11.Трубы
- 11.1.Спиральношовные трубы
- 11.2.Толстостенные и многослойные трубы
- 11.3.Высокочастотная сварка труб 36-529мм
- 11.4.Печная, газоэлектрическая и контактная сварка труб средних и малых диаметров
- 12.Сооружение магистрального трубопровода
- 12.1.Трубосварочная база
- 12.1.1.Центраторы
- 13.1.Ручная дуговая сварка
- 13.2.Сварка в защитных газах
- 13.3.Контактная сварка труб
- 14.Производство корпусных конструкций
- 14.1Корпуса судов
- 14.1.1Узлы корпуса.
- 14.1.2Модульные конструкции судов
- 14.1.3Базовые элементы и схемы нх сборки.
- 14.2.Линии изготовления плоских секций
- 14.2.1Сборка и сварка объемных секций
- 14.2.2.Сборка судов из модулей
- 15.Технология изготовления сварных деталей машин
- 15.1.Автомобили
- 15.1.1.Кузов легкового автомобиля
- 16. Контроль качества сварки
- 16.1.Проверка квалификации сварщиков
- 16.2. Контроль качества исходных материалов
- 16.2.1.Контроль качества основного металла
- 16.2.2.Контроль качества электродов
- 16.2.3.Контроль качества флюсов
- 16.3. Контроль заготовок
- 16.3.1. Контроль сборки
- 16.4. Контроль технологического процесса
- 16.5. Контроль качества сварки готового изделия
- 16.5.1.Внешний осмотр и обмер сварных швов
- 16.5.2.Методы контроля плотности сварных швов.
- 16.5.3.Рентгеновское просвечивание
- 16.5.4.Просвечивание сварных швов гамма-лучами
- 16.5.5.Ультразвуковой метод контроля
- 16.5.6.Люминесцентный метод контроля
- 16.5.7.Магнитные методы контроля
- 16.5.8.Металлографические исследования
- 16.6.Организация технического контроля
- 17. Пример расчета технико-экономических показателей проекта
- 17.1.Конкурентоспособность проекта.
- 18.Безопасность жизнедеятельности
- 18.1.Меры безопасности при работе на пк
- 18.2.Расчет общего освещения в лаборатории
- 18.3.Сварочное производство как источник загрязнения окружающей среды
- ЛитератуРа