4.6. Положительные направления токов и напряжений
Для однозначности описания процессов, происходящих в каком-либо элементе цепи, необходимо знать не только величины его тока и напряжения, но также их направления в рассматриваемый момент времени. Действительно, если задан график изменения тока (см. рис. 4.1, б) или его уравнение, то по ним можно утверждать, что ток через полупериод изменяет свое направление на обратное и величина его для момента t1положительна, но направление тока в элементе в этот момент неизвестно. Чтобы ответить на этот вопрос, одно из двух возможных направлений тока в элементе берут за основное и указывают его на схеме стрелкой. Стрелки, поставленные на схемах, указывают положительные направления э.д.с, напряжений и токов, т.е. такие направления, для которых значения обозначенных величин положительны.
Если, например, в заданный момент времени значения величин положительны: Е > 0, V > 0, I > 0, е > 0, e > О, i > О, то их действительные направления в этот момент времени совпадают с направлениями, указанными на схеме стрелками. Если значения этих величин отрицательны, то их действительные направления противоположны направлениям, указанным на схеме стрелками.
Рассмотрим примеры цепей и. поясним значение поставленных на их схемах стрелок. На рис. 4.9 приведены схемы соединений двух простейших цепей постоянного (а) и изменяющегося (б) токов, состоящих из идеальных источников питания с э.д.с. Е и е и электрических ламп, подключенных непосредственно к внешним зажимам источников. На рис. 4.10 даны схемы замещения этих цепей, на которых электрические лампы представлены резистивными элементами с сопротивлением r. На рис. 4.11 изображены графики э.д.с. источников питания.
Из физики известно, что за положительное направление тока принято направление движения положительных зарядов, за положительное направление э.д.с. — направление действия сторонних сил на положительный заряд, за положительное направление напряжения — направление убывания потенциала. Так как положительные заряды внутри источника движутся в направлении действия сторонних сил, а в приемнике — в направлении убывания потенциала, то положительные направления тока и э.д.с. источника, тока и напряжения приемника совпадают.
Положительное направление напряжения на внешних зажимах источника противоположно положительному направлению тока источника. Следовательно, положительные заряды внутри источника в этот момент времени движутся в направлении возрастания потенциала, и их энергия возрастает на величинуqE = Wэилиqe = We. В приемнике положительные заряды при этом движутся в направлении убывания потенциала, и их энергия убывает на величинуqUилиqu. Развиваемая источником мощностьР = ЕIилир = еiи мощность участка цепи Р = UIилир =uiбудут положительны только при совпадающих положительных направлениях э.д.с. и тока источника, а также напряжения и тока приемника.
Воспользуемся понятием о положительных направлениях для описания процесса в цепях, схемы которых приведены на рис.4.12, а и 4.13, а.
Предположим, что источники питания идеальны: U = Еиu = е, графики их напряжений заданы на тех же рисунках (см. рис. 4.12, б и 4.13, б), а подключение ламп к источникам осуществлено в момент прохождения и от отрицательных значений к положительным, т. е. в точке О.
После включения лампы потенциал зажима а относительно потенциала зажима bв первой схеме начнет увеличиваться, а во второй - уменьшаться. Следовательно, в первой схеме лампа должна светить более ярко.
При t > T/2яркость лампы в первой схеме уменьшается, а во второй – увеличивается. Изменение яркости ламп можно наблюдать и визуально, если частота синусоидальной э.д.с. мала (1 – 3 Гц) и имеется возможность осуществить подключение лампы в заданный момент времени.
- Министерство сельского хозяйства
- 1. Пояснительная записка
- 1.1. Актуальность изучения учебной дисциплины
- 1.2. Цели и задачи учебной дисциплины
- 1.3. Требования к уровню освоения содержания учебной дисциплины
- 2. Основные термины и определения
- 3. Содержание учебной дисциплины
- Тема 10. Автоматизация насосных станций……………………….. 96
- Тема 11. Автоматизация насосных установок артезианских
- Тема 12. Автоматизация гидротехнических сооружений и мелиоративных систем……………………………………………………….117
- Тема 13. Телемеханизация…………………………………………....126
- Тема 14. Электроснабжение автоматизированных систем………130
- Тема 15. Экономическая эффективность автоматизации мелиоративных систем………………………………………………………….147
- Введение
- Тема 1. Мелиоративные системы как объекты автоматизации
- 1.1. Степень автоматизации мелиоративных систем
- 1.2. Автоматический контроль за состоянием оборудования и сооружений
- 1.3. Автоматическая защита от ненормальных режимов работы и повреждений
- 1.4. Автоматизация работы отдельного объекта
- 1.5. Очередность автоматизации
- 1.6. Объекты автоматизации
- Контрольные вопросы к теме 1
- Тема 2. Классификация систем автоматизации
- 2.1. Общие сведения о системах автоматизации
- 2.2. Классификация автоматических систем
- 2.3.Типы систем автоматического регулирования
- 2.4. Три основных класса систем автоматического регулирования
- 2.5. Принципы автоматизации гидромелиоративных систем
- 2.6. Основные сведения по составлению схем автоматики
- 2.7.Функуиональные и структурные схемы автоматики
- Контрольные вопросы к теме 2
- Тема 3. Элементы автоматики
- 3.1. Функции элементов автоматики
- 3.2. Основные параметры элементов автоматики
- 3.3. Виды автоматизации
- 3.4. Элементы автоматики
- 3.5. Характеристики элементов автоматики
- 3.6. Контактные и бесконтактные элементы
- Контрольные вопросы к теме 3
- Тема 4. Электрические цепи
- 4.1. Электрическая цепь и ее элементы
- 4.2. Классификация электрических токов и напряжений
- 4.3. Классификация электрических цепей и их элементов
- 4.4. Параметры элементов электрической цепи
- 4.5. Изображение электрических цепей
- 4.6. Положительные направления токов и напряжений
- Контрольные вопросы к теме 4
- Тема 5. Датчики в системах автоматики
- 5.1. Общие сведения о датчиках
- 5.2. Реостатные датчики
- 5.3. Индуктивные и трансформаторные датчики
- 5.4. Емкостные и пьезоэлектрические датчики
- 5.5. Теплоэлектрические и тепломеханические датчики
- 5.6. Электромеханические датчики уровня, давления, расхода и скорости
- 5.7. Датчики влажности
- Контрольные вопросы по теме 5
- Тема 6. Системы автоматических измерений
- 6.1. Измерение уровня воды
- 6.2. Измерение давления.
- 6.3. Измерение расхода воды
- 6.4. Измерение влажности
- Контрольные вопросы по теме 6.
- Тема 7. Усилители, блоки сравнения, задатчики, командные устройства.
- 7.1. Полупроводниковые усилители
- 7.2. Гидравлические и пневматические усилители
- Контрольные вопросы по теме 7.
- Тема 8. Исполнительные элементы.
- 8.1. Электромагнитные реле
- 8.2. Реле выдержки времени и программные устройства
- 8.3. Электрические исполнительные механизмы.
- 8.4. Гидравлические исполнительные механизмы.
- Контрольные вопросы к теме 8.
- Тема 9. Электроприводы в системах автоматизации.
- 9.1. Устройство трехфазных асинхронных машин
- 9.2. Вращающееся двухполюсное поле
- 9.3. Вращающееся многополюсное поле
- 9.4. Режимы работы трехфазной асинхронной машины
- 9.5. Режим генератора
- 9.6. Элементы электропривода
- 9.7. Заземления и зануления в трехфазных сетях
- 9.8. Расчет мощности и выбор электродвигателя
- 9.9. Классификация режимов работы электропривода
- 9.10. Выбор типа электродвигателя
- 9.11. Аппаратура и схемы управления
- 9.12. Релейно-контакторное управление
- Контрольные вопросы к теме 9.
- Тема 10. Автоматизация насосных станций
- 10.1. Схемы управления насосными агрегатами
- 10.2. Заливка насосов водой
- 10.3. Автоматический пуск и остановка центробежных насосов
- 10.4. Автоматическое, полуавтоматическое и программное управление насосными станциями
- 10.5. Регулирование подачи центробежных насосов
- 10.6. Гидропневматические напорно-регулирующие установки
- 10.7. Источники питания повышенной частоты
- Тема 11. Автоматизация насосных установок артезианских скважин.
- 11.1. Особенности автоматизации артезианских насосных установок
- 11.2. Схемы автоматического управления артезианскими насосными агрегатами
- 11.3. Схемы самозапуска артезианских автоматических насосных установок
- 11.4. Электродные датчики и их установка в водопонижающих скважинах
- Тема 12. Автоматизация гидротехнических сооружений и мелиоративных систем.
- 12.1. Выбор затворов автоматизированных сооружений.
- 12.2. Минимальная мощность электропривода
- 12.3. Выбор электропривода
- 12.4. Скорость маневрирования затворами
- 12.5. Автоматизация капельного орошения
- Тема 13. Телемеханизация.
- 13.1. Требования мелиоративных систем к устройствам телемеханики
- 13.2. Объемы телемеханизации
- Тема 14. Электроснабжениеавтоматизированных систем.
- 14.1. Особенности энергоснабжения
- 14.2. Централизованное электроснабжение
- 14.3. Система электроснабжения напряжением 6 - 10 кв
- 14.4. Резервирование электроснабжения
- 14.5. Трансформаторные подстанции
- 30% В течение 2 ч
- 14.6. Расчет линии электропередачи
- 14.7. Конструктивные особенности электроснабжения 6 – 10 кВ.
- 14.8. Электроснабжение напряжением до 380/220 в
- 14.9. Определение предельной длины линии 380/220 в
- Тема 15. Экономическая эффективность автоматизации мелиоративных систем.
- 15.1. Основные источники экономической эффективности
- 15.2. Расчет единовременных затрат.
- 15.3. Эксплуатационные расходы
- 15.4. Затраты по заработной плате
- 15.5. Амортизационные отчисления
- 15.6. Затраты на электроэнергию
- 15.7. Затраты на материалы, необходимые для обслуживания технических средств.
- 15.8. Прочие затраты
- 15.9. Определение ожидаемой годовой экономии.
- Леонид Иванович Кумачев