Производства белка
В соответствии с нормами питания человек должен ежедневно получать с пищей от 60 до 120 г полноценного белка.
Для поддержания жизненных функций организма, построения клеток и тканей необходим постоянный синтез различных белковых соединений. Если растения и большинство микроорганизмов способны синтезировать все аминокислоты из углекислого газа, воды, аммиака и минеральных солей, то человек и животные не могут синтезировать некоторые аминокислоты (валин, лейцин, изолейцин, лизин, метионин, треонин, триптофан и фенилаланин). Эти аминокислоты называются незаменимыми. Они должны поступать с пищей. Их недостаток вызывает тяжелые заболевания человека и понижает продуктивность сельскохозяйственных животных.
В настоящее время мировой дефицит белка составляет около 15 млн.т. Наиболее перспективен микробиологический синтез. Если для крупного рогатого скота требуется 2 месяца для удвоения белковой массы, для свиней – 1,5 месяца, для цыплят – 1 месяц, то для бактерий и дрожжей – от 1 до 6 часов. Мировое производство пищевых белковых продуктов за счет микробного синтеза составляет более 15 тыс. т в год.
Рассмотрим пример: время удвоения кишечной палочки составляет 20 мин, тогда через 20 мин из одной клетки образуется две дочерних, через 40 мин – четыре «внучки», через 60 мин – восемь «правнучек», через 80 мин – 16 «праправнучек». Через 10 ч 40 мин из одной бактерии будет образовано свыше 6 млрд. бактерий, что соответствует населению Земли, а через 44 ч из одной бактерии массой 1•10-12 г образуется биомасса в количестве 6•1024 г, что соответствует массе Земли.
Использование различных микроорганизмов в качестве источников белка и витаминов обусловлено следующими факторами:
а) возможностью использования для культивирования микроорганизмов разнообразных химических соединений, в том числе отходов производств;
б) относительно несложной технологией производства микроорганизмов, которое может осуществляться круглогодично; возможностью его автоматизации;
в) высоким содержанием белка (до 60…70 %) и витаминов, а также углеводов, липидов в микробиальных препаратах;
г) повышенным содержанием незаменимых аминокислот по сравнению с растительными белками;
д) возможностью направленного генетического влияния на химический состав микроорганизмов в целях совершенствования белковой и витаминной ценности продукта.
Для промышленного производства пищевых продуктов на основе микроорганизмов необходимы тщательные медико-биологические исследования. Такие продукты должны пройти всестороннюю проверку для выявления канцерогенного, мутагенного, эмбриотропного действия на организм человека и животных. Токсикологические исследования, усвояемость продуктов микробного синтеза – основные критерии целесообразности технологии их производства.
Для получения белков используются дрожжи, бактерии, водоросли и мицелиальные грибы.
Преимуществом дрожжей перед другими микроорганизмами является их технологичность: устойчивость к инфекциям, легкость отделения от среды благодаря крупным размерам клеток. Они способны накапливать до 60 % белка, богатого лизином, треонином, валином и лейцином (этих аминокислот мало в растительных кормах). Массовая доля нуклеиновых кислот составляет до 10 %, что вредно действует на организм. В результате их гидролиза образуется много пуриновых оснований, превращающихся затем в мочевую кислоту и ее соли, которые являются причиной мочекаменной болезни, остеохондроза и других заболеваний. Оптимальная норма добавок дрожжевой массы в корм сельскохозяйственных животных составляет от 5 до 10 % от сухих веществ. Дрожжи применяются для пищевых и кормовых целей.
Преимуществами бактерий является высокая скорость роста и способность синтезировать до 80 % белка. Полученный белок содержит много дефицитных аминокислот: метионина и цистеина. Недостатками являются маленькие размеры клеток и низкая их концентрация в культуральной среде, что затрудняет процесс выделения. В некоторых бактериальных липидах могут содержаться токсины. Массовая доля нуклеиновых кислот до 16 %. Используются только для кормовых целей.
Преимуществами водорослей являются высокое содержание полноценного по аминокислотному составу белка, накапливающегося в количестве 65 %, легкое выделение водорослей из культуральной среды, низкое содержание нуклеиновых кислот – 4 % (для сравнения – у высших растений 1…2 %). Водоросли используются для пищевых и кормовых целей.
Мицелиальные грибы традиционно используются в качестве пищевого продукта в странах Африки, в Индии, Индонезии, Китае и др. Накапливают до 50 % белка, по аминокислотному составу приближающегося к белку животного происхождения, богаты витаминами группы В. Клеточные стенки тонкие и легко перевариваются в желудочно-кишечном тракте животных. Массовая доля нуклеиновых кислот составляет 2,5 %.
С 1985 г микробиальный белок используется в пищевой промышленности для изготовления различных продуктов и полуфабрикатов.
В производстве пищевых продуктов рассматриваются три основные формы использования микробного белка:
1) цельная масса (без разрушения клеточных стенок);
2) частично очищенная биомасса (предусматривается разрушение клеточных стенок и удаление нежелательных компонентов);
3) выделенные из биомассы белки (изоляты).
ВОЗ (Всемирная организация здравоохранения) сделала заключение, что белок микроорганизмов можно использовать в продуктах питания, но допустимое количество нуклеиновых кислот, вводимых вместе с белком в диету взрослого человека не должно превышать 2 г в сутки. Введение микробиального белка не вызывает отрицательных последствий, но встречается проявление аллергических реакций, желудочные заболевания и т.д.
- Бийский технологический институт (филиал)
- Краткий курс биотехнологии
- 1 Природа и многообразие биотехнологических процессов
- 1.1 Введение
- История развития биотехнологических процессов
- 1.3 Микроорганизмы, используемые в биотехнологических процессах
- 2 Производство белков одноклеточных организмов
- 2.1 Целесообразность использования микроорганизмов для
- Производства белка
- 2.2 Использование дрожжей
- 2.3 Использование бактерий
- 2.4 Использование водорослей
- 2.5 Использование микроскопических грибов
- 3 Методы генетического конструирования
- In vivo
- 3.1 Регуляция метаболизма в микробной клетке
- 3.2 Мутагенез и методы выделения мутантов
- 3.3 Плазмиды и конъюгация у бактерий
- 3.4 Фаги и трансдукция
- 3.5 Гибридизация эукариотических организмов
- 3.6 Слияние протопластов или фузия клеток
- 4 Технология производства метаболитов
- 4.1 Классификация продуктов биотехнологических производств
- 4.2 Общая схема биотехнологического производства продуктов микробного синтеза
- 4.3 Биотехнология получения первичных метаболитов
- 4.3.1 Производство аминокислот
- 4.3.2 Производство витаминов
- 4.3.3 Производство органических кислот
- 4.4 Биотехнология получения вторичных метаболитов
- 4.4.1 Получение антибиотиков
- 4.4.2 Получение промышленно важных стероидов
- 5 Биоиндустрия ферментов
- 5.1 Область применения и источники ферментов
- 5.2 Выбор штамма и условий культивирования
- 5.3 Технология культивирования микроорганизмов – продуцентов ферментов и выделение ферментов
- 5.4 Инженерная энзимология и ее задачи
- 6 Методы генетического конструирования
- In vitro
- 6.1 Биотехнология рекомбинантных днк
- 6.2 Конструирование рекомбинантных днк
- 6.3 Идентификация клеток-реципиентов, содержащих рекомбинантные гены
- 6.4 Экспрессия чужеродных генов
- 6.4.1 Клонирование в бактериях
- 6.4.2 Клонирование в дрожжах
- 6.4.3 Клонирование в клетках животных
- 6.5 Использование генетической инженерии в животноводстве
- 6.6 Генная инженерия растений
- 7 Основы клеточной инженерии растений
- 7.1 История предмета
- 7.2 Методы и условия культивирования изолированных тканей и клеток растений
- 7.3 Дедифференцировка на основе каллусогенеза
- 7.4 Типы культур клеток и тканей
- 7.5 Общая характеристика каллусных клеток
- 7.6 Морфогенез в каллусных тканях как проявление тотипотентности растительной клетки
- 7.6.1 Дифференцировка каллусных тканей
- 7.6.2 Гистогенез (образование тканей)
- 7.6.3 Органогенез
- 7.6.4 Соматический эмбриогенез
- 7.7 Изолированные протопласты, их получение, культивирование, применение
- 7.8 Клональное микроразмножение и оздоровление растений
- 8 Экологическая биотехнология
- 8.1 Получение биогаза
- 8.2 Производство биоэтанола
- 8.3 Очистка сточных вод
- 8.3.1 Методы очистки сточных вод
- 8.3.1.1 Механические методы
- 8.3.1.2 Химические методы
- 8.3.1.3 Физико-химические методы
- 8.3.1.4 Биологический метод
- 8.3.2 Отстой сточных вод и его использование
- 9 Контрольные вопросы
- Список литературы
- Содержание
- Краткий курс биотехнологии