3.1 Регуляция метаболизма в микробной клетке
Каждое из множества разнообразных веществ создается в клетке в строго необходимых для роста пропорциях в результате ферментативных реакций. Координация химических превращений, обеспечивающая экономичность метаболизма, осуществляется у микроорганизмов тремя отдельными механизмами:
– регуляцией активности ферментов, в том числе ретроингибированием;
– регуляцией объема синтеза ферментов (индукция и репрессия биосинтеза ферментов);
– катаболитной репрессией.
Ретроингибирование – это ингибирование по принципу обратной связи. При наличии в среде специфического субстрата начинает работать определенный фермент. Когда в результате многоступенчатых превращений накапливается конечный метаболит, то он тормозит работу фермента. С помощью этого механизма конечные продукты саморегулируют свой биосинтез:
.
Если продуцент выращивать на среде, содержащей аналог метаболита или антиметаболит, который не включаются в обмен веществ, то рост организмов будет подавляться. В этих условиях выживают лишь некоторые клетки. Выжившие мутанты будут обладать дефектами в механизме регулирования активности фермента по принципу обратной связи, поэтому они не чувствительны к концентрации конечного продукта и способны к сверхсинтезу.
Все биологические реакции осуществляются с помощью ферментов. Ферменты, содержащиеся в микроорганизмах, можно разделить на три группы:
конститутивные ферменты – ферменты, синтез которых не за-
висит от состава питательной среды (например, ферменты гликолиза);
адаптивные или индуцибельные ферменты – ферменты, которые
синтезируются в ответ на появление в питательной среде индукторов – субстратов или их структурных аналогов;
репрессибельные ферменты. Конечные продукты метаболизма
могут вызывать замедление или остановку всех ферментов соответствующего пути. Это явление называется репрессией.
.
Если концентрация конечного продукта снижается до определенного очень низкого уровня, то происходит дерепрессия ферментов, то есть скорость их биосинтеза увеличивается до необходимой величины.
Если в питательной среде присутствуют несколько различных источников углерода, то клетки микроорганизма вырабатывают ферменты для усвоения только одного, более предпочтительного. После его полного исчерпания происходит экспрессия ферментов метаболизма другого источника углерода. Это явление получило название катаболитной репрессии.
Таким образом, один источник углерода подавляет биосинтез ферментов, обеспечивающих метаболизм другого источника углерода.
- Бийский технологический институт (филиал)
- Краткий курс биотехнологии
- 1 Природа и многообразие биотехнологических процессов
- 1.1 Введение
- История развития биотехнологических процессов
- 1.3 Микроорганизмы, используемые в биотехнологических процессах
- 2 Производство белков одноклеточных организмов
- 2.1 Целесообразность использования микроорганизмов для
- Производства белка
- 2.2 Использование дрожжей
- 2.3 Использование бактерий
- 2.4 Использование водорослей
- 2.5 Использование микроскопических грибов
- 3 Методы генетического конструирования
- In vivo
- 3.1 Регуляция метаболизма в микробной клетке
- 3.2 Мутагенез и методы выделения мутантов
- 3.3 Плазмиды и конъюгация у бактерий
- 3.4 Фаги и трансдукция
- 3.5 Гибридизация эукариотических организмов
- 3.6 Слияние протопластов или фузия клеток
- 4 Технология производства метаболитов
- 4.1 Классификация продуктов биотехнологических производств
- 4.2 Общая схема биотехнологического производства продуктов микробного синтеза
- 4.3 Биотехнология получения первичных метаболитов
- 4.3.1 Производство аминокислот
- 4.3.2 Производство витаминов
- 4.3.3 Производство органических кислот
- 4.4 Биотехнология получения вторичных метаболитов
- 4.4.1 Получение антибиотиков
- 4.4.2 Получение промышленно важных стероидов
- 5 Биоиндустрия ферментов
- 5.1 Область применения и источники ферментов
- 5.2 Выбор штамма и условий культивирования
- 5.3 Технология культивирования микроорганизмов – продуцентов ферментов и выделение ферментов
- 5.4 Инженерная энзимология и ее задачи
- 6 Методы генетического конструирования
- In vitro
- 6.1 Биотехнология рекомбинантных днк
- 6.2 Конструирование рекомбинантных днк
- 6.3 Идентификация клеток-реципиентов, содержащих рекомбинантные гены
- 6.4 Экспрессия чужеродных генов
- 6.4.1 Клонирование в бактериях
- 6.4.2 Клонирование в дрожжах
- 6.4.3 Клонирование в клетках животных
- 6.5 Использование генетической инженерии в животноводстве
- 6.6 Генная инженерия растений
- 7 Основы клеточной инженерии растений
- 7.1 История предмета
- 7.2 Методы и условия культивирования изолированных тканей и клеток растений
- 7.3 Дедифференцировка на основе каллусогенеза
- 7.4 Типы культур клеток и тканей
- 7.5 Общая характеристика каллусных клеток
- 7.6 Морфогенез в каллусных тканях как проявление тотипотентности растительной клетки
- 7.6.1 Дифференцировка каллусных тканей
- 7.6.2 Гистогенез (образование тканей)
- 7.6.3 Органогенез
- 7.6.4 Соматический эмбриогенез
- 7.7 Изолированные протопласты, их получение, культивирование, применение
- 7.8 Клональное микроразмножение и оздоровление растений
- 8 Экологическая биотехнология
- 8.1 Получение биогаза
- 8.2 Производство биоэтанола
- 8.3 Очистка сточных вод
- 8.3.1 Методы очистки сточных вод
- 8.3.1.1 Механические методы
- 8.3.1.2 Химические методы
- 8.3.1.3 Физико-химические методы
- 8.3.1.4 Биологический метод
- 8.3.2 Отстой сточных вод и его использование
- 9 Контрольные вопросы
- Список литературы
- Содержание
- Краткий курс биотехнологии