5.1 Область применения и источники ферментов
Производство ферментных препаратов занимает одно из ведущих мест в современной биотехнологии. Постоянно увеличивается объем их выпуска и расширяется сфера применения. Ферменты являются высокоактивными нетоксичными биокатализаторами белкового происхождения. Их преимуществом перед химическими катализаторами является действие при нормальном давлении, температуре от 20 до 70 ºС, рН от 4 до 9. Они имеют высокую субстратную специфичность, что позволяет в сложной смеси субстратов направленно воздействовать только на определенные соединения.
Согласно принятой классификации и номенклатуре сейчас идентифицировано около 2000 ферментов. Промышленно выпускается около 250 наименований, причем 99 % общей суммы реализации ферментных препаратов приходится только на 18 ферментов.
Наибольший удельный вес среди выпускаемых препаратов занимают протеиназы, широко используемые в синтетических моющих средствах, и амилазы для переработки крахмала. Эти два вида препаратов составляют 60 % общего объема выпуска ферментных препаратов за рубежом.
Другими крупными отраслями – потребителями ферментов, являются
– производство вин и соков 10 %;
– производство спирта 8 %;
– сыроделие 5 %;
– хлебопечение 5 %;
– пивоварение 6 %;
– прочие отрасли 6 %.
В России, кроме того, ферменты внедряются в кормопроизводство.
Особое место в общем объеме производства ферментов занимают высокоочищенные ферментные препараты. Их доля в общем объеме очень мала, так как технология сложна, требует больших материальных затрат и времени. Эти препараты очень важны для медицины, аналитических целей и научных исследований.
Ферменты присущи всем живым существам, однако для их выделения используют только те природные объекты, в которых содержание используемого энзима составляет не менее 1 %.
Источниками ферментов могут быть:
1) проросшее зерно различных злаков (солод) – для получения амилаз, латекс фикусовых, дынного дерева – для получения протеиназ;
2) отдельные ткани и органы животных (поджелудочная железа, слизистые оболочки желудков и тонких кишок, сырный сычуг крупного рогатого скота);
3) микроорганизмы. В специфических условиях микроорганизмы способны синтезировать огромное количество ферментов. Они легко переключаются с синтеза одного фермента на другой, имеют короткий цикл роста (от 16 до 100 ч). Для промышленного получения ферментов используют как естественные штаммы, так и полученные с помощью мутагенеза, селекции и индукции биосинтеза.
Ферменты способны синтезировать бактерии, грибы, дрожжи, актиномицеты; микроорганизмы могут быть моно- или полиферментами.
- Бийский технологический институт (филиал)
- Краткий курс биотехнологии
- 1 Природа и многообразие биотехнологических процессов
- 1.1 Введение
- История развития биотехнологических процессов
- 1.3 Микроорганизмы, используемые в биотехнологических процессах
- 2 Производство белков одноклеточных организмов
- 2.1 Целесообразность использования микроорганизмов для
- Производства белка
- 2.2 Использование дрожжей
- 2.3 Использование бактерий
- 2.4 Использование водорослей
- 2.5 Использование микроскопических грибов
- 3 Методы генетического конструирования
- In vivo
- 3.1 Регуляция метаболизма в микробной клетке
- 3.2 Мутагенез и методы выделения мутантов
- 3.3 Плазмиды и конъюгация у бактерий
- 3.4 Фаги и трансдукция
- 3.5 Гибридизация эукариотических организмов
- 3.6 Слияние протопластов или фузия клеток
- 4 Технология производства метаболитов
- 4.1 Классификация продуктов биотехнологических производств
- 4.2 Общая схема биотехнологического производства продуктов микробного синтеза
- 4.3 Биотехнология получения первичных метаболитов
- 4.3.1 Производство аминокислот
- 4.3.2 Производство витаминов
- 4.3.3 Производство органических кислот
- 4.4 Биотехнология получения вторичных метаболитов
- 4.4.1 Получение антибиотиков
- 4.4.2 Получение промышленно важных стероидов
- 5 Биоиндустрия ферментов
- 5.1 Область применения и источники ферментов
- 5.2 Выбор штамма и условий культивирования
- 5.3 Технология культивирования микроорганизмов – продуцентов ферментов и выделение ферментов
- 5.4 Инженерная энзимология и ее задачи
- 6 Методы генетического конструирования
- In vitro
- 6.1 Биотехнология рекомбинантных днк
- 6.2 Конструирование рекомбинантных днк
- 6.3 Идентификация клеток-реципиентов, содержащих рекомбинантные гены
- 6.4 Экспрессия чужеродных генов
- 6.4.1 Клонирование в бактериях
- 6.4.2 Клонирование в дрожжах
- 6.4.3 Клонирование в клетках животных
- 6.5 Использование генетической инженерии в животноводстве
- 6.6 Генная инженерия растений
- 7 Основы клеточной инженерии растений
- 7.1 История предмета
- 7.2 Методы и условия культивирования изолированных тканей и клеток растений
- 7.3 Дедифференцировка на основе каллусогенеза
- 7.4 Типы культур клеток и тканей
- 7.5 Общая характеристика каллусных клеток
- 7.6 Морфогенез в каллусных тканях как проявление тотипотентности растительной клетки
- 7.6.1 Дифференцировка каллусных тканей
- 7.6.2 Гистогенез (образование тканей)
- 7.6.3 Органогенез
- 7.6.4 Соматический эмбриогенез
- 7.7 Изолированные протопласты, их получение, культивирование, применение
- 7.8 Клональное микроразмножение и оздоровление растений
- 8 Экологическая биотехнология
- 8.1 Получение биогаза
- 8.2 Производство биоэтанола
- 8.3 Очистка сточных вод
- 8.3.1 Методы очистки сточных вод
- 8.3.1.1 Механические методы
- 8.3.1.2 Химические методы
- 8.3.1.3 Физико-химические методы
- 8.3.1.4 Биологический метод
- 8.3.2 Отстой сточных вод и его использование
- 9 Контрольные вопросы
- Список литературы
- Содержание
- Краткий курс биотехнологии