§ 5.4. Тепловое проявление химических реакций — производственный источник зажигания
Химические реакции, протекающие с выделением значительного количества тепла, таят потенциальную опасность возникновения пожара или взрыва, так как возможен неконтролируемый разогрев реагирующих, вновь образующихся или рядом находящихся горючих веществ. В условиях производства и хранения химических веществ встречается большое количество таких соединений, контакт которых с воздухом или водой, а также взаимный контакт веществ друг с другом может быть причиной возникновения пожара.
Вещества, самовоспламеняющиеся и самовозгорающиеся при соприкосновении с воздухом. Нередко по условиям технологии находящиеся в аппаратах вещества могут быть нагреты до температуры, превышающей температуру их самовоспламенения. Так, пиролизный газ при получении этилена из нефтепродуктов имеет температуру самовоспламенения в пределах 530...550° С, а выходит из печей пиролиза с температурой 850° С. Мазут с температурой самовоспламенения 380...420° С на установках термического крекинга нагревается до 500° С; бутан и бутилен, имеющие температуру самовоспламенения соответственно 420 и 439° С, при получении бутадиена нагреваются до 550...650° С и т. д. Естественно, что при появлении неплотностей в аппаратах и трубопроводах и соприкосновении с воздухом выходящего наружу продукта, нагретого выше температуры самовоспламенения, происходит его загорание. В некоторых случаях используемые в технологии вещества имеют очень низкую температуру самовоспламенения, даже ниже температуры окружающей среды. Так, триэтилалюминий имеет температуру самовоспламенения минус 68° С, диэтилалюминийхлорид — минус 60° С, триизобутилалюминий — минус 40° С, фосфористый водород, жидкий и белый фосфор имеют температуру самовоспламенения ниже комнатной температуры. Загорания подобных веществ можно избежать только путем обеспечения хорошей герметичности аппаратов с исключением взаимоконтакта этих веществ с воздухом или использованием их в растворе.
Многие вещества, соприкасаясь с воздухом, способны к самовозгоранию. Самовозгорание начинается при температуре окружающей среды или после некоторого предварительного (иногда незначительного) их подогрева. Причины и условия самовозгорания жидких и твердых веществ подробно рассмотрены в литературе [3]. К таким веществам следует отнести растительные масла и животные жиры, каменный и древесный уголь, сернистые соединения железа, некоторые сорта сажи, порошкообразные вещества (алюминий, цинк, титан, магний, торф, отходы нитроглифталевых лаков), олифу, скипидар, лакоткани, клеенку, гранитоль, сено, силос и т. п.
Длительность процесса самовозгорания веществ можно рассчитать по методике, разработанной и предложенной ВНИИПО МВД СССР:
lg t = Ap + nplgS; (5.15)
lg t = Ab - nblg τ, (5.16)
где t — начальная температура процесса самовозгорания, °С; τ — длительность процесса самовозгорания, ч; S — удельная поверхность штабеля (кучи), м2/м3; Ар, Аь, np, пь — константы, определяемые опытным путем (приведены в справочнике [2]).
Используя формулы (5.15) и (5.16), можно определить температуру начала саморазогрева, если известны размеры штабеля и предполагаемый срок хранения данного материала. Можно определить также длительность периода безопасного хранения, зная размеры штабеля и начальную температуру вещества, либо допустимые размеры штабеля — по начальной температуре и предполагаемой длительности хранения вещества.
Контакт самовозгорающихся химических веществ с воздухом происходит обычно при повреждении тары, розливе жидкости, расфасовке веществ, при сушке, открытом хранении твердых измельченных, а также волокнистых, листовых и рулонных материалов, при вскрытии аппаратов для осмотра и ремонта, при откачке жидкостей из резервуаров, когда внутри резервуаров имеются самовозгорающиеся отложения.
Наиболее специфичными для производственной аппаратуры являются случаи самовозгорания отложений сернистых соединений железа и термополимеров. Сернистые соединения железа образуются в результате химического взаимодействия сероводорода или свободной серы со стенками стальных аппаратов. Этот процесс протекает чаще всего при переработке и хранении сернистых нефтей и нефтепродуктов, хранении, очистке и переработке природного и попутного нефтяного газа, а также отходящих газов нефтепереработки, получении и очистке генераторных газов, водорода, коксового газа и т. д.
Наиболее активным по склонности к самовозгоранию является закисный сульфид железа. Окисление сернистых соединений железа начинается с подсыхания поверхности и соприкосновения ее с кислородом воздуха. При этом температура постепенно повышается, появляется голубой дымок, а затем небольшие язычки пламени. В результате отложения разогреваются иногда до 600...700° С. Избежать самовозгорания сернистого железа можно путем химической очистки от сероводорода поступающих на обработку веществ, а также постепенным окислением образовавшихся в аппаратах самовозгорающихся отложений. Замедляют процесс окисления самовозгорающихся соединений путем добавки небольшого количества воздуха (до 0,5%) к водяному пару, подаваемому на продувку аппаратов, либо путем заполнения аппарата водой и постепенного снижения ее уровня. Очистку стенок аппаратов следует вести при постоянном смачивании их водой, а получающиеся зачистки сразу же удалять и подвергать уничтожению.
Когда производственный процесс связан с использованием веществ, склонных к полимеризации, имеется возможность образования так называемых термополимеров. Они представляют собой рыхлое губчатое вещество со значительным количеством неиспользованных в процессе полимеризации кратных связей. Наличие этих связей и развитая поверхность термополимера определяют его способность к окислению и самовозгоранию при соприкосновении с воздухом.
Образование термополимеров предупреждают введением ингибиторов, устранением в технологической линии застойных участков и тупиков. Образовавшиеся термополимеры удаляют с поверхности аппаратов с такими же мерами предосторожности, с какими удаляют сернистые соединения железа.
Самовозгорающиеся вещества следует хранить изолированно от других огнеопасных веществ, препятствуя их соприкосновению с воздухом, вводить ингибиторы, тормозящие процесс окисления. Веществ, воспламеняющихся при взаимодействии с водой, на производстве имеется значительное количество. Выделяющееся при этом тепло может вызвать воспламенение образующихся или при мыкающих к зоне реакции горючих веществ. К веществам, воспламеняющимся или вызывающим горение при соприкосновении с водой, следует отнести щелочные металлы, карбид кальция, карбиды щелочных металлов, негашеную известь, фосфористый кальций, фосфористый натрий, сернистый натрий, гидросульфит натрия. Многие из этих веществ (щелочные металлы, карбиды) при взаимодействии с водой образуют горючие газы, воспламеняющиеся от теплоты реакции:
2K + 2H2O = 2KOH + H2 + Q.
При взаимодействии небольшого количества (3...5 г) калия и натрия с водой развивается температура выше 600...650° С. Если взаимодействуют более крупные куски, происходят взрывы с разбрызгиванием расплавленного металла. В мелкораздробленном состоянии щелочные металлы воспламеняются во влажном воздухе. Сильное разогревание может произойти при взаимодействии карбида кальция с водой:
CaC2 + 2H2O = Ca(OH)2 + C2H2+Q.
Для разложения 1 кг химически чистого карбида кальция необходимо 0,562 кг воды. При таком или меньшем количестве воды в "зоне реакции развивается температура до 800...1000° С. При этом куски карбида кальция раскаляются до свечения. Естественно, что образующийся в таких условиях ацетилен воспламеняется при контакте с воздухом, так как температура его самовоспламенения равна 335° С. При взаимодействии карбида с большим количеством воды ацетилен не воспламеняется, потому что тепло реакции поглощается водой. Карбиды щелочных металлов при соприкосновении с водой реагируют со взрывом.
Некоторые вещества, например негашеная известь, являются негорючими, но теплота реакции их с водой может нагреть соприкасающиеся горючие материалы до температуры самовоспламенения. Так, при контакте стехиометрического количества воды с негашеной известью температура в зоне реакции может достичь 600° С:
CaO + H2O = Ca(OH)2 + Q.
Известны случаи пожаров деревянных складов, в которых хранилась негашеная известь. Пожары возникали, как правило, вскоре после дождя: вода попадала на негашеную известь через неисправную крышу или через щели пола.
Во влажном состоянии гидросульфид натрия и сернистый натрий интенсивно окисляются на воздухе с выделением свободной серы и большого количества тепла. Выделяющееся тепло нагревает серу до воспламенения (при влажности 10% воспламенение серы наступает при температуре 242° С).
Опасен контакт с водой алюминийорганических соединений, так как триэтилалюминий, диэтилалюминийхлорид, триизобутилалю-миний и другие подобные им вещества взаимодействуют с водой со взрывом.
Контакт веществ с водой или влагой воздуха происходит обычно при повреждении аппаратов и трубопроводов, при неисправности тары, а также при открытом хранении этих веществ. Однако вода может проникнуть в помещение и через открытые проемы в стенах, при неисправности покрытия или пола, при повреждении водопроводной линии и системы водяного отопления, при конденсации влаги из воздуха и т. п. Взрывы или усиление начавшегося пожара могут иметь место при попытках тушить подобные вещества водой или пеной. Выбор средств и способов тушения производится с учетом свойств веществ, обращающихся в производстве.
Воспламенение химических веществ при взаимоконтакте — явление, часто наблюдающееся в производстве. Чаще всего такие случаи происходят при действии окислителей на органические вещества. В качестве окислителей выступают хлор, бром, фтор, окислы азота, азотная кислота, перекиси натрия, бария и водорода, хромовый ангидрид, двуокись свинца, хлорная известь, жидкий кислород, селитры (нитраты аммония, щелочных и щелочноземельных металлов), хлораты (соли хлорноватой кислоты, например бертолетова соль), перхлораты (соли хлорной кислоты, например хлорнокислый натрий), перманганаты (соли марганцевой кислоты, например марганцовокислый калий), соли хромовой кислоты и др.
Окислители, соприкасаясь или смешиваясь с органическими веществами, вызывают их воспламенение. Некоторые окислители (селитры, хлораты, перхлораты, перманганаты, соли хромовой кислоты) образуют смеси с органическими веществами, взрывающиеся от незначительного механического или теплового воздействия.
Некоторые смеси окислителей и горючих веществ способны воспламеняться при действии на них серной или азотной кислоты или небольшого количества влаги. Алюминийорганические соединения, входя в контакт с кислотами, спиртами и щелочами, реагируют со взрывом. Многие инициаторы, катализаторы и порообразователи, широко используемые в производстве синтетических смол, пластических масс, синтетических волокон и каучука, воспламеняются и взрываются при взаимодействии с другими веществами. Пожароопасные свойства некоторых инициаторов и порофоров указаны в табл. 5.1.
На заводе синтетического каучука произошел взрыв емкости с гидроперекисью изопропилбензола (гиперизом), который вызвал повреждения производственных коммуникаций, фасада здания и лестничной клетки. Гипериз, используемый в качестве инициатора при производстве бутадиенстирольного каучука, поступал на завод в металлических бочках и перекачивался по резиновому шлангу в приемную емкость. Около бочек с гиперизом находились бочки с триэтаноламином. По ошибке в емкость с гидроперекисью стали закачивать триэтаноламин. Произошла бурная реакция, вызвавшая разложение всей массы гидроперекиси с указанными выше последствиями.
Реакции взаимодействия окислителя с горючим веществом способствуют измельченность вещества, повышенная начальная его температура, а также наличие инициаторов химического процесса. В некоторых случаях реакции носят характер взрыва. Поэтому окислители нельзя хранить совместно с другими горючими веществами, нельзя допускать какого-либо контакта между ними, если это не обусловлено характером технологического процесса.
Таблица 5.1
Вещество | Пожароопасные свойства |
Метил уретанбензолсуль-фогидразид (ЧХЗ-5) | Горючее вещество. В смеси с сильными окислителями взрывается |
Динитрозопентамети-лентетрамин (ЧХЗ-18) | Нестойкое горючее вещество. Дает вспышку в смеси с кислотами и щелочами, взрывается с сильными окислителями |
Азодинитрилизомасляной кислоты (ЧХЗ-57) | Чувствителен к воздействию температуры, трению, удару. Температура воспламенения 60" С, самовоспламенения 240° С. При контакте с кислотами взрывается. |
Персульфат аммония | Сильный окислитель. В смеси с органическими соединениями может вызвать взрыв |
Персульфат калия | Сильный окислитель. Активно окисляет органические соединения, воспламеняет бумагу, ткани, древесину |
Перекись водорода | Сильный окислитель. В концентрированном виде воспламеняет все органические вещества и склонна к взрывному распаду |
Гидроперекись изопропилбензола (гипериз) | Взрывается в смеси с некоторыми органическими веществами и солями |
Вещества, способные к воспламенению и взрыву при нагревании или механических воздействиях. Некоторые химические вещества нестойки по своей природе, способны разлагаться с течением времени под действием температуры, трения, удара и других факторов. Это, как правило, эндотермические соединения, и процесс их разложения связан с выделением большего или меньшего количества тепла. Это и взрывчатые вещества — селитры, перекиси, гидроперекиси, карбиды некоторых металлов, ацетилениды, ацетилен, диацетилен, порофоры и др.
Нарушение технологического регламента при производстве, использовании или хранении таких веществ, воздействие на них источников тепла (например приборов отопления, горячих продук топроводов) и особенно действие возможного пожара могут привести к взрывному их разложению. Подобные случаи неоднократно наблюдались при осуществлении процессов нитрации органических соединений, при получении перекисей и гидроперекисей, ацетилена и тому подобных веществ.
На нефтехимическом предприятии произошел взрыв ректификационной колонны с гидроперекисью изопропилбензола. Силой взрыва колонну (высотой 13 м, диаметром 2,2 м) сорвало с фундамента открытой площадки и отбросило в сторону. Возник пожар. Перед аварией колонна находилась в состоянии пуска. В процессе пуска произошло замерзание воды в системе захолаживания (отвод избыточного количества тепла из зоны химической реакции), что вызвало повышение температуры в, нижней части колонны до 99° С (вместо положенных по регламенту 90° С), разложение гипериза и взрыв.
Известны случаи, когда пожар, возникший на одной из установок, приводил к взрывному разложению продукта, находящегося в аппаратах этой установки, вызывая мощные взрывы оборудования с полным разрушением установки и повреждением аппаратов соседних установок.
Склонностью к взрывному распаду под действием повышенных давления и температуры обладает ацетилен. Наличие в ацетилене диацетилена и высших полиацетиленов усиливает опасность взрывного разложения газа. Диацетилен — взрывоопасный горючий газ, от искры и нагретого тела воспламеняется со взрывом. Около 12% диацетилена делает ацетилен способным к взрывному разложению даже при нормальном давлении. Не меньшей опасностью обладает бутиндиол. Это горючее вещество с температурой самовоспламенения 343° С. Горение протекает с сильным взрывом. При нагревании, перегонке, взаимодействии со щелочами, галогенами и солями тяжелых металлов происходит его взрывообразное разложение.
Еще раз следует отметить, что нестойкие химические вещества, способные к воспламенению и взрыву при нагревании и механических воздействиях, нельзя хранить вместе с другими горючими веществами. Следует строго придерживаться правил, регламентированных соответствующими нормами.
- Пожарная безопасность
- § 1.1. Аппараты с неподвижным уровнем жидкости
- § 1.2. Аппараты с подвижным уровнем жидкости
- § 1.3. Аппараты с газом
- § 1.4. Аппараты с пылями, порошками и волокнами
- Глава 2. Выход горючих веществ наружу из нормально действующих аппаратов
- § 2.1. Аппараты с открытой поверхностью испарения
- § 2.2. Аппараты с дыхательными устройствами
- § 2.3. Аппараты периодического действия
- § 2.4. Выход пыли в помещение
- Глава 3. Выход горючих веществ наружу из поврежденного технологического оборудования
- § 3.1. Характеристика аварийной ситуации
- § 3.2. Локальное и полное повреждение аппаратов
- § 3.3. Ограничение утечек горючих веществ
- § 3.4. Образование взрывоопасной смеси в помещении и на открытой площадке
- Глава 4. Причины повреждения технологического оборудования
- § 4.1. Основы прочности и классификация причин повреждения оборудования
- § 4.2. Повреждения технологического оборудования в результате механических воздействий
- § 4.3. Повреждения технологического оборудования в результате температурного воздействия
- § 4.4. Повреждения технологического оборудования в результате химического воздействия
- Защита от коррозии
- Глава 5. Производственные источники зажигания
- § 5.1. Понятие источника зажигания
- § 5.2. Открытый огонь, раскаленные продукты горения и нагретые ими поверхности — производственные источники зажигания
- § 5.3. Тепловое проявление механической энергии как производственный источник зажигания
- § 5.4. Тепловое проявление химических реакций — производственный источник зажигания
- § 5.5. Тепловое проявление электрической энергии — производственный источник зажигания
- Глава 6. Подготовка оборудования к ремонтным огневым работам
- § 6.1. Использование естественной вентиляции оборудования перед проведением ремонтных огневых работ
- § 6.2. Использование принудительной вентиляции оборудования перед проведением ремонтных огневых работ
- § 6.3. Пропаривание аппаратов перед проведением ремонтных огневых работ
- § 6.4. Промывка аппаратов водой и моющими растворами перед проведением ремонтных огневых работ
- § 6.5. Флегматизация среды в аппаратах инертными газами — способ подготовки их к проведению ремонтных огневых работ
- § 6.6. Заполнение аппаратов пеной при проведении ремонтных огневых работ
- § 6.7. Организация ремонтных огневых работ
- Раздел второй. Предотвращение распространения пожара
- Глава 7. Ограничение количества горючих веществ и материалов, обращающихся в технологическом процессе
- § 7.1. Выбор технологической схемы производства
- § 7.2. Режим эксплуатации технологического процесса производства
- Производства,их удаление
- § 7.4. Замена горючих веществ, обращающихся в производстве, негорючими
- § 7.5. Аварийный слив жидкостей
- § 7.6. Аварийный выпуск горючих паров и газов
- Глава 8. Огнезадерживающие устройства на производственных коммуникациях
- § 8.1. Сухие огнепреградители
- Расчет огнепреградителя по методу я. Б. Зельдовича
- § 8.2. Жидкостные огнепреградители (гидрозатворы)
- § 8.3. Затворы из твердых измельченных материалов
- § 8.4. Автоматические заслонки и задвижки
- § 8.5. Защита трубопроводов от горючих отложений
- § 8.6. Изоляция производственных помещений от траншей и лотков с трубопроводами
- Глава 9. Защита технологического оборудования и людей от воздействия опасных факторов пожара
- § 9.1. Опасные факторы пожара
- § 9.2. Защита людей и технологического оборудования от теплового воздействия пожара
- § 9.3. Защита технологического оборудования от разрушений при взрыве
- § 9.4. Защита людей и технологического оборудования от агрессивных сред
- Пожарная профилактика основных
- § 10.2. Пожарная профилактика процессов измельчения твердых веществ
- § 10.3. Пожарная профилактика процессов механической обработки древесины и пластмасс
- § 10.4. Замена л вж и гж пожаробезопасными моющими средствами в технологических процессах обезжиривания и очистки поверхностей
- Глава 11. Пожарная профилактика средств транспортировки и хранения веществ и материалов
- § 11.1. Пожарная профилактика средств перемещения горючих жидкостей
- § 11.2. Пожарная профилактика средств перемещения и сжатия газов
- § 11.3. Пожарная профилактика средств перемещения твердых веществ
- § 11.4. Пожарная профилактика технологических трубопроводов
- § 11.5. Пожарная профилактика хранения горючих веществ
- Глава 12. Пожарная профилактика процессов нагревания и охлаждения веществ и материалов
- § 12.1. Пожарная профилактика процесса нагревания водяным паром
- § 12.2. Пожарная профилактика процесса нагревания горючих веществ пламенем и топочными газами
- § 12.3. Пожарная профилактика теплопроизводящих установок, используемых в сельском хозяйстве
- § 12.4. Пожарная профилактика процесса нагревания высокотемпературными теплоносителями
- Глава 13. Пожарная профилактика процесса ректификации
- § 13.1. Понятие процесса ректификации
- § 13.2 Ректификационные колонны: их устройство и работа
- § 13.3. Принципиальная схема непрерывно действующей ректификационной установки
- § 13.4. Особенности пожарной опасности процесса ректификации
- § 13.5. Пожарная профилактика процесса ректификации
- Пожаротушение и аварийное охлаждение ректификационной установки
- Глава 14. Пожарная профилактика процессов сорбции и рекуперации
- § 14.1. Пожарная опасность процесса абсорбции
- § 14.2. Пожарная профилактика процессов адсорбции и рекуперации
- Возможные пути распространения пожара
- Глава 15. Пожарная профилактика процессов окраски и сушки веществ и материалов
- § 15.1. Пожарная опасность и профилактика процесса окраски
- Окраска окунанием и обливанием
- Окраска в электрическом поле высокого напряжения
- § 15.2. Пожарная опасность и профилактика процессов сушки
- Глава 16. Пожарная профилактика процессов, протекающих в химических реакторах
- § 16.1. Назначение и классификация химических реакторов
- § 5. По конструктивному оформлению теплообменных устройств
- § 16.2. Пожарная опасность и противопожарная защита химических реакторов
- Глава 17. Пожарная профилактика экзотермических и эндотермических химических процессов
- § 17.1. Пожарная профилактика экзотермических процессов
- Процессы полимеризации и поликонденсации
- § 17.2. Пожарная профилактика эндотермических процессов
- Дегидрирование
- Пиролиз углеводородов
- Глава 18. Изучение технологических процессов
- §18.1. Информация о технологии производств, необходимая работнику пожарной охраны
- § 18.2. Источники информации о технологических процессах производств
- § 18.3. Методы изучения технологии производств
- Глава 19. Исследование и оценка пожаровзрывоопасности технологических процессов производств
- § 19.1. Категории пожаровзрывоопасности производств согласно требованиям сНиПов
- § 19.2. Соответствие технологии производств системе стандартов безопасности труда
- § 19.3. Разработка пожарно-технической карты
- Глава 20. Пожарно-техническая экспертиза технологических процессов на стадии проектирования производств
- § 20.1. Особенности пожарного надзора на стадии проектирования технологических процессов производств
- § 20.2. Использование норм проектирования по обеспечению пожарной безопасности технологических процессов производств
- § 20.3. Задачи и методика пожарно-технической экспертизы проектных материалов
- § 20.4. Основные решения пожарной безопасности, разрабатываемые на стадии проектирования производств
- Глава 21. Пожарно-техническое обследование технологических процессов действующих производств
- § 21.1. Задачи и организация пожарно-технического обследования
- § 21.2. Бригадный метод пожарно-технического обследования
- § 21.3. Комплексное пожарно-техническое обследование предприятий отрасли
- §21.4. Нормативно-технические документы пожарно-технического обследования
- § 21.5. Пожарно-техническая анкета как методический документ обследования
- § 21.6. Взаимодействие госпожнадзора с другими надзорными органами
- Глава 22. Обучение рабочих и инженерно-технических работников основам пожарной безопасности технологических процессов производств
- § 22.1. Организация и формы обучения
- § 22.2. Учебные программы
- § 22.3. Методика и технические средства обучения
- § 22.4. Программированное обучение
- Литература
- Оглавление