5.1. Свойства твердой поверхности
Чистота поверхности. Поверхность практически любых твердых тел содержит различные загрязнения и примеси (адсорбированные газы, влага воздуха и др.) Для металлов (исключая золото, платину и серебро) типичные загрязнения оксиды.
В зависимости от условий обработки и хранения металла толщина и химический состав оксидов сильно различаются. Например, на железе толщина трехслойных оксидных пленок FeO/Fe3O4/Fe2O3 1,515 нм, на алюминии 520 нм. Для меди характерно двухслойное строение оксидной пленки Cu2O/CuO. Для всех металлов, содержащих оксидные слои, присуще вследствие сорбционной способности наличие физио- и хемосорбированной воды, количество которой достигает нескольких десятков монослоев в зависимости от адсорбционной активности металла и влажности воздуха.
По мере удаления от поверхности подложки энергия связи молекул адсорбированной воды уменьшается. Температурный интервал десорбции физиосорбированной воды у многих металлов 50230С, хемосорбированной 250430С; энергия активации десорбции с поверхности железа соответственно 38 кДжмоль и 84 кДжмоль.
Очевидно, что при нанесении на металлические поверхности лакокрасочный материал контактирует не с металлом, а с кислородными или иными соединениями и адсорбированной водой, находящимися на его поверхности.
П оверхности стекол присуща своя специфика. Обычно поверхность стекла обогащена кремнеземом; для нее характерно наличие силанольных групп , являющихся донорами водорода, в результате, как и в случае металлов, на поверхности стекол хемосорбируется вода. Толщина адсорбционного слоя воды десятки нанометров, удаляется вода с трудом даже при прогреве в вакууме при 400500С.
На поверхности силикатных строительных материалов бетона, штукатурки, кирпича, камня всегда присутствует адсорбированная вода, а также карбонаты за счет диоксида углерода воздуха, поскольку строительные материалы имеют щелочной характер.
Поверхность кожи, пластмасс, резины чаще всего загрязнена воскам, жирами, а также веществами, вводимыми при получении и переработке материалов (катализаторы, стабилизаторы, поверхностно-активные вещества и др.), что отрицательно сказывается на адгезионной прочности покрытий.
Макро- и микрорельеф поверхности. Микрорельеф, или атомно-молекулярная шероховатость, поверхности определяется кристаллической и надмолекулярной структурой самого материала. Кроме того, кристаллическим телам свойственны поверхностные трещины и полости микро- и субмикроскопических размеров.
Макрорельеф поверхности обуславливается природой материала и условиями изготовления и обработки изделий. Разновидности макрорельефа: волнистость, шероховатость, пористость. Рельеф может создаваться за счет дефектов поверхности рисками, царапинами, раковинами и т. д. Данные о геометрии поверхности получают путем снятия профилограмм (рис. 5.1).
Шероховатость определяют по ГОСТ 278973, используя высотные и шаговые параметры (рис. 5.1,б). Высотные параметры (Ra, Rz, Rмакс.) характеризуют среднюю и наибольшую высоту неровностей, шаговые (S, Sm, tp) взаимное расположение вершин неровностей. (Параметры: Ra среднеарифметическое отклонение, Rz высота неровностей по 10 точкам и tp относительная средняя длина профиля на рисунке не указаны.) Определено 14 классов шероховатости (чистоты) поверхности. Высший класс 14, ему соответствуют поверхности Ra,0,01 мкм и Rz0,05 мкм.
а
б
Рис. 5.1. Разновидности неровностей (а) и профилограмма (б) твердой
поверхности:
I макроскопические отклонения, Rмакс = 1,00,1 мм;
I волнистость, Rмакс = 101103мм;
III микронеровности, Rмакс = 103105мм;
IV ультрамикронеровности, Rмакс = 103107мм
Характеристикой рельефа поверхности может быть также показатель доступности произведение амплитуды иглы профилографа на число колебаний, приходящееся на единицу длины. Для полированной поверхности этот показатель составляет несколько единиц, а для дробеструйно-обработанной десятки и сотни единиц.
Очень развитая поверхность у пористых материалов древесины, бумаги, кожи, тканей. Капилляры древесины разных пород имеют размеры 3090 мкм, а их суммарный объем составляет от 55 до 72% общего объема древесины. Полости кожи занимают до 5060% общего объема материала.
Поверхности твердых тел подразделяют на истинную, доступную и кажущуюся. Кажущаяся поверхность (SK) определяют специальными методами. Для ряда материалов значения SД/SK приведены ниже:
Полированная сталь 1,4
Прокатанный никель 3,5
Шлифованный никель 9,7
Древесина, кожа 200300
Рельеф поверхности влияет на расход лакокрасочных материалов и во многом определяет необходимую толщину эксплуатационно-способных покрытий. Например, расходные коэффициенты красок при нанесении на древесину в 23 раза выше, чем при нанесении на металлы (непористые материалы). Толщина защитных покрытий должна превышать максимальную высоту микро-неровностей поверхности не менее чем на 20%.
В этой связи существует допустимый предел по шероховатости: приемлемой является поверхность не менее 4 класса чистоты (Ra,10 мкм; Rz40 мкм). Норма шероховатости стали после дробеметной обработки составляет значения Rмакс. = 5585 мкм. Необходимо иметь в виду, что уже при значениях Rмакс.3 мкм и Ra0,5 мкм шероховатость поверхности подложки проявляется в покрытии и тем больше, чем тоньше пленка.
Создание заданного рельефа и регулирование степени шероховатости поверхности осуществляется разными способами: соответствующей механической, термической, химической, электрохимической обработкой, воздействием коронного и тлеющего разрядов и др.
Гидрофильность и гидрофобность поверхности свойства, характеризующие сродство твердых тел к воде. Так, Ребиндер считает, что металлы по своей молекулярной структуре гидрофобны, но оксиды и сорбированные газы придают их поверхности гидрофильность. Например, максимальное набухание древесины наблюдается в воде. С уменьшением диэлектрической проницаемости степень поглощения соответствующих жидкостей уменьшается. Однако древесина практически не набухает в ароматических и алифатических углеводородах (5), происходит лишь капиллярное впитывание этих соединений. Кожа гидрофильна, но жировые загрязнения на ее поверхности сообщают ей свойство гидрофобности. Если кожу тщательно обезжирить, то она приобретает способность смачиваться водными красками (казеиновые, полиакрилатные и др.)
Пластмассы в зависимости от химической природы связующего имеют разную по знаку полярности поверхность. Так, органическое стекло, полиамидные, полиацетатные пластические массы фено- и аминопласты хорошо смачиваются водными растворами пленкообразователей. Однако возникают проблемы при нанесении красок, содержащих полярные растворители, на полимеры с высокой гидрофобностью поверхности, такие как полиолефины, полифторолефины. Таким образом, под водные краски нужна гидрофильная поверхность, а под краски на гидрофобных пленкообразователях гидрофобная. Регулирование по знаку полярности поверхности достигается следующими путями:
гидрофилизация тщательным обезжириванием, окислением (в случае пластмасс), нанесением конверсионных покрытий (в случае металлов);
гидрофобизация обработкой поверхностей ПАВ, аппретами, шлифованием поверхности в присутствии неполярных жидкостей (для металлов).
Поверхностная энергия. Условно все тела подразделяют на две группы:
с высокой поверхностной энергией (500 мДжм2);
с низкой поверхностной энергией (500 мДжм2).
К первой группе относятся металлы, окислы металлов, нитриды, сульфиды, стекло, кварц и др. Ко второй пластмассы, кожа, бумага, древесина, органические низкомолекулярные вещества.
Экспериментально определение поверхностной энергии твердых тел проводят по энергии разрушения, или критического напряжения разрыва (метод Гриффита), методом «нулевой» ползучести (метод Таммана), по смачиванию поверхности различными жидкостями (метод Зисмана).
Поверхностная энергия Гиббса твердых тел, которые могут служить подложкой, во многом определяет смачивание и растекание, адгезионную прочность и др.
При одинаковой по знаку полярности любые жидкости лучше смачивают подложку с большей поверхностной энергией. Поверхностная энергия может быть изменена путем модификации. Например, металлы оксидируют, фосфатируют, азотируют, силицируют; природу поверхности изменяют путем адсорбции низкомолекулярных веществ (жирные кислоты, амины, ПАВ), нанесения и других органических и неорганических соединений.
- Предисловие
- Введение
- Глава 1. Основные сведения о лакокрасочных материалах
- 1.1. Классификация и обозначение лакокрасочных материалов
- Примеры обозначения лакокрасочных материалов.
- 1.2. Состав лакокрасочных материалов
- 1.2.1. Пигменты
- Пигменты
- 1.2.2. Удешевляющие добавки, наполнители
- 1.2.3. Растворители
- 1.2.4. Добавки
- Глава 2. Лакокрасочные материалы на основе поликонденсационных смол
- 2.1. Алкидные лакокрасочные материалы
- 1 Бункер для пигментов; 2 смеситель, быстроходный;
- 3 Смеситель напорный; 4, 5 бисерные мельницы;
- 6 Мерная емкость для лака; 7 хранилище одноколерных паст;
- 2.2. Свойства и применение алкидных лакокрасочных материалов
- 2.3. Карбамидо- и меламиноформальдегидные лакокрасочные материалы
- 2.3.1. Свойства и применение карбамидоформальдегидных
- 2.3.2. Меламиноформальдегидные лакокрасочные материалы
- 2.3.3. Фенолоформальдегидные лакокрасочные материалы
- 2.4. Алкидно-стирольные лакокрасочные материалы
- 2.4.1. Свойства и применение некоторых промышленных
- 2.4.2. Алкидно-акриловые эмали
- 2.5. Эпоксидные лакокрасочные материалы
- 2.6. Эпоксиэфирные лакокрасочные материалы
- 2.7. Полиэфирные лакокрасочные материалы
- 2.8. Полиуретановые лакокрасочные материалы
- 2.9. Кремнийорганические лакокрасочные материалы
- 2.10. Фуриловые лакокрасочные материалы (лаки и эмали)
- 2.11. Циклогексанонформальдегидные лаки
- Глава 3. Лакокрасочные материалы на основе полимеризационных смол
- 3.1. Перхлорвиниловые лакокрасочные материалы
- 1 Замесочная машина; 2 краскотерочная машина для получения подколеровочных паст; 3 дежа; 4 смеситель; 5 диссольвер;
- 6 Мельница; 7 бисерная мельница; 8 промежуточная емкость;
- 9 Мерник; 10 шестеренчатый насос; 11 фильтр
- 1 Замесочная машина; 2 краскотерочная машина; 3 дежа;
- 4 Смеситель для эмали; 5 промежуточная емкость для основы; 6 смеситель для пигментной пасты; 7 мерник; 8 – фильтр;
- 9 Шестеренчатый насос
- 3.1.1. Лакокрасочные материалы на основе
- 3.2. Лакокрасочные материалы на основе полиакрилатов
- 3.3. Лакокрасочные материалы на основе поливинилацеталей
- 3.4. Эмали на основе хлоркаучука
- 3.5. Лакокрасочные материалы на основе эфиров целлюлозы
- 1 Мерники на весах, 2 емкости промежуточные; 3 насос шестеренчатый; 4 – малаксер; 5 смеситель с планетарной мешалкой;
- 6 Смеситель с якорной мешалкой; 7 центрифуга типа сго-100
- 3.6. Лакокрасочные материалы на основе битумов
- 3.7. Лакокрасочные материалы на основе природных смол
- 3.7.1. Циклокаучуковые эмали
- 3.8. Фторопластовые лаки и эмали
- 3.9. Эмали на основе хлорсульфированного полиэтилена
- 3.10. Пластизоли и органозоли (поливинилхлоридные лакокрасочные материалы)
- 3.10.1. Состав пластизолей и органозолей
- 3.10.2. Получение пластизолей и органозолей
- 3.11. Масляные и алкидные краски
- 1 Замесочная машина; 2 дежа; 3 краскотерочная машина;
- 4 Смеситель; 5 – насос; 6 фильтр
- 3.12. Порошковые краски
- 1 Электродвигатель, 2 мешалка; 3 турбосмеситель; 4 затвор; 5 рукав;
- 6 Смеситель; 7 вибросито; 8 затвор шлюзовой
- 3.12.1. Получение, свойства и применение порошковых красок
- 1 Смеситель сухих компонентов; 2 питатель; 3 экструдер двухчервячный;
- 4 Охлаждающее устройство; 5 мельница грубого помола; 6 мельница тонкого помола; 7 фильтр
- 3.13. Водоэмульсионные краски
- 1 Смеситель для приготовления раствора добавок; 2 весы; 3 хранилище для эмульсии; 4 насос; 5 – фильтр сетчатый; 6 смеситель быстроходный;
- 7 Промежуточный смеситель; 8 бункер для пигментов; 9 бисерная мельница; 10 смеситель
- 3.14. Контроль качества в лакокрасочной промышленности
- 3.15. Стандартизированные методы испытаний лакокрасочных материалов и покрытий
- 3.16. Определение технологических свойств лакокрасочных материалов
- 3.16.1. Условная вязкость
- 3.16.2. Срок годности
- 3.16.3. Содержание летучих и нелетучих твердых
- 3.16.4. Степень перетира
- 3.16.5. Цвет непигментированных лакокрасочных материалов
- 3.16.6. Укрывистость
- 3.16.7. Разлив
- 3.16.8. Электрические свойства
- Глава 4. Лакокрасочные покрытия
- 4.1. Характеристика и классификация лакокрасочных покрытий
- Классификация лкп по внешнему виду. Внешний вид поверхности покрытия характеризуется цветом, фактурой, качеством исполнения покрытия наличием или отсутствием дефектов. Определения основных дефектов.
- Покрытий
- Примеры обозначения лакокрасочных покрытий:
- 4.2. Требования, предъявляемые к лакокрасочным
- 1 Ньютоновское течение; 2 дилатантное течение;
- 3 Псевдопластическое течение; 4 пластическое течение;
- 4.3. Поверхностное натяжение жидких лакокрасочных материалов
- 4.4. Свойства порошковых лакокрасочных материалов
- Глава 5. Взаимодействие лакокрасочных материалов с твердой поверхностью
- 5.1. Свойства твердой поверхности
- 5.2. Смачивание жидкими лакокрасочными материалами твердой поверхности
- 5.2.1. Формирование поверхности контакта
- 1 Подложка; 2 воздушные полости; 3 лакокрасочный материал
- 5.2.2. Смачивание поверхностей на воздухе
- 5.2.3. Смачивание увлажненных и погруженных в воду поверхностей
- Глава 6. Свойства и разновидности покрытий
- 6.1. Прочностные и деформационные свойства
- 6.2. Факторы, влияющие на механические свойства покрытий
- 6.3. Покрытия целевого назначения. Морозостойкие покрытия
- 6.4. Износостойкие покрытия
- 6.5. Вибропоглощающие покрытия
- 6.6. Кавитационностойкие покрытия
- 6.7. Методы определения механических свойств пленок
- 6.7.1. Адгезия
- 6.7.2. Природа адгезионных связей
- 6.7.3. Молекулярное взаимодействие
- 6.7.4. Хемосорбционное взаимодействие
- 6.7.5. Электростатическое взаимодействие
- 6.7.6. Диффузионное взаимодействие
- 6.7.7. Факторы, влияющие на адгезионную прочность покрытий
- 1 Поливинилбутираль; 2 поликапроамид; 3 пентапласт; 4 сэвилен
- 6.7.8. Длительная адгезионная прочность
- 6.7.9. Взаимодействие покрытий с гидрофильными веществами
- 6.7.10. Покрытия целевого назначения
- 6.7.11. Методы определения адгезионной прочности
- 6.8. Внутренние напряжения
- 6.8.1. Возникновение и релаксация внутренних напряжений
- 6.8.2. Факторы, влияющие на внутренние напряжения
- 6.9. Проницаемость покрытий
- 6.9.1. Перенос жидкостей и газов через пленки
- I покрытия с явной пористостью; II покрытия со скрытой пористостью;
- III беспористые покрытия
- 1 Масляное; 2 алкидное; 3 хлоркаучуковое;
- 4 Битумное
- 6.9.2. Факторы, влияющие на проницаемость
- 6.9.3. Методы определения проницаемости
- 6.10. Оптические свойства
- 6.10.1. Пропускание, поглощение и отражение света покрытиями
- I воздух; II пленка; III подложка
- 1 Полиакрилатного; 2 ацетилцеллюлозного; 3 меламиноалкидного;
- 4 Ацетилцеллюлозного с 0,3% 2-гидрокси-4-метоксибензофенона;
- 5 Ацетилцеллюлозного с 0,55 2,2-дигидрокси-4-метоксибензофенона
- 6.10.2. Покрытия как средство цветового оформления изделий и объектов
- 6.10.3. Покрытия целевого назначения
- 6.10.4. Методы определения оптических свойств покрытий
- 6.11. Электрические свойства
- Глава 7. Определение физико – механических свойств лакокрасочных покрытий
- 7.1. Получение свободных пленок
- 7.1.1. Получение лакокрасочных покрытий для испытаний
- 7.1.2. Толщина лакокрасочных покрытий
- 7.1.3. Прочность пленок при ударе
- 7.1.4. Твердость покрытия по маятниковому прибору
- Глава 8. Технология нанесения лакокрасочных материалов
- 8.1. Способы нанесения лакокрасочных материалов на поверхность
- 8.1.1. Классификация способов окрашивания
- 8.2. Пневматическое распыление
- 8.3. Электростатическое распыление
- 1 Окрасочная камера; 2 – пульт дистанционного управления;
- 6 Дозирующее устройство; 7 кенотронный выпрямитель тока;
- 8 Электростатический генератор; 9 – вытяжная вентиляция
- 8.4. Гидравлическое распыление
- 1 Корпус; 2 насос; 3 всасывающий клапан; 4 приемный шланг; 5 фильтр; 6 нагнетательный клапан; 7 сальник; 8 напорный шланг; 9 кран; 10 «удочка»; 11 форсунка
- 8.5. Окунание и облив
- 1 Ванна; 2 насос; 3 карман; 4 сточный лоток; 5 изделие
- 1 Подающие валки; 2 карандаш; 3 ванна с лакокрасочным материалом;
- 4 Ограничительные шайбы; 5 сушильный транспортер
- 8.6. Валковый способ
- 8.7. Электроосаждение
- 8.7.1. Электрофоретическое нанесение дисперсий
- 8.7.2. Электроосаждение лакокрасочных материалов из водных растворов
- 8.7.3. Лакокрасочные материалы при электроосаждении
- 8.7.4. Технология получения покрытий
- 12 Фильтр; 13 теплообменник
- 8.8. Получение покрытий способом электрополимеризации
- 8.9. Хемоосаждение
- 8.10. Ручные способы нанесения жидких лакокрасочных материалов
- Глава 9. Способы отверждения покрытий
- 9.1. Тепловое отверждение покрытий
- 9.1.1. Конвективный способ
- I подъем температуры, II собственно сушка, III охлаждение покрытия
- 9.1.2. Терморадиационный способ
- 1 Вентилятор; 2 воздушная завеса; 3 корпус камеры;
- 4 Рабочая зона; 5 излучатель; 6 тамбуры;
- 7 Конвейер; 8 изделие
- 9.1.3. Индукционный способ
- 9.2. Отверждение покрытий под действием уф излучения
- 9.3. Радиационное отверждение покрытий
- 1 Деталь мебели; 2 лаконаливная машина; 3 радиационно-химическая установка с ускорителями электронов
- Глава 10. Технология окрашивания металлов
- 10.1. Подготовка поверхности перед окрашиванием
- 10.1.1. Механические способы очистки
- 10.1.2. Термические способы очистки
- 10.1.3. Химические способы очистки
- Метасиликат натрия 3–5
- 10.1.4. Травление
- 10.1.5. Удаление старых покрытий
- 10.2. Нанесение конверсионных покрытий
- 10.3. Стадии технологического процесса получения покрытий
- 10.3.1. Грунтование
- 10.3.2. Шпатлевание
- 10.3.3. Нанесение верхних слоев покрытия
- 10.3.4. Шлифование и полирование
- Глава 11. Технология окрашивания неметаллических материалов
- 11.1 Окрашивание и лакирование древесины. Покрытия древесины: прозрачные и непрозрачные
- 11.1.1. Получение прозрачных покрытий
- 11.1.2. Получение непрозрачных покрытий
- 11.2. Окрашивание и лакирование кожи
- 11.2.1. Покрывное крашение
- 11.3. Окрашивание пластмасс и резины
- 11.4. Технология изготовления декоративных
- Литература
- Оглавление
- Химия и технология лакокрасочных материалов и покрытий
- 220050. Минск, Свердлова, 13а.
- 220600, Г. Минск, ул.Красная, 23. Заказ .