10.2. Нанесение конверсионных покрытий
Конверсионные покрытия используют для повышения противокоррозионной стойкость металла, улучшения адгезии лакокрасочных покрытий, увеличения срока службы. Конверсионные покрытия наносят перед окрашиванием преимущественно на те изделия, которые подвергаются эксплуатации в жестких условиях. Наиболее широко применяются покрытия, получаемые методами фосфатирования, оксидирования, хроматирования.
Фосфатирование. С химической точки зрения фосфатирование процесс образования на поверхности слоя из нерастворимых в воде фосфатов металлов.
Фосфатируют обычно черные металлы (кроме чугуна и стального литья), несколько реже – цветные: алюминий, цинк и другие. Процесс фосфатирования заключается в обработке поверхности металлов водными растворами фосфорнокислых солей. В зависимости от характера образующихся фосфатов различают кристаллическое и аморфное фосфатирование, а по условиям проведения процесса обычное (или нормальное), ускоренное или холодное.
Кристаллическое фосфатирование наиболее часто применяют в промышленности. Для его проведения используют соли двухвалентных металлов, преимущественно, монофосфат цинка Zn(H2PO4)2H20 и марганцево-железный фосфат (соль «Мажеф») – смесь однозамещенных фосфатов марганца и железа (9/1).
Из растворов этих солей с рН=3,03,6 образуются нерастворимые фосфаты в виде кристаллогидратов с толщиной слоя от 2 до 25 мкм и массой 1 м2 110 г. В состав цинк-фосфатных слоев, получаемых на стальной поверхности, входят гопеит Zn3(PO4)24H2O и фосфофиллит Zn2Fe(PO4)24H2O; марганцево-железных – гуреолит (Mn,Fe)5H2(PO4)44H2O; эти соединения образуют неразрывное целое с металлом, изменяя природу поверхности и делая ее пассивной в коррозионном отношении.
Фосфатированные металлы хорошо смачиваются жидкими ЛКМ. Благодаря этому и развитой поверхности достигается высокая адгезия покрытий, в том числе и тех, которые в обычных условиях плохо адгезируют. Фосфатные покрытия в зависимости от состава имеют термостойкость 150220oС. Они обладают хорошими диэлектрическими свойствами; цвет покрытий – от светло-серого, до темно-серого.
Фосфатирование – лучший способ грунтования поверхности при нанесении лакокрасочных покрытий.
Фосфатирование – типичный электрохимический процесс, характеризующийся следующими реакциями:
В растворе:
Me(H2PO4)2 = Me2+ + 2H2PO44-,
H2PO44- = H+ + HPO42-.
На анодных участках поверхности:
Me = Me2+ + 2e,
2Me2+ + 2H2PO4- = Me3(PO4)2 + 4H+,
3Me2+ + 2HPO42- = Me3(PO4)2 + 2H+.
На катодных участках поверхности:
2H+ + 2e = H2.
Обычное, или нормальное, фосфатирование проводят погружением изделий в раствор соли «Мажеф» с концентрацией 35г/л. Общая кислотность раствора Ко=3040 точек, свободная кислотность Кс=3,03,5 точки (точка – число миллилитров 0,1н раствора NaОН, идущее на титрование10мл раствора).
Температура раствора должна быть 9699С. В этих условиях продолжительность процесса фосфатирования составляет 5060 мин.
Из-за высокой температуры и длительности процесса обычное фосфатирование, несмотря на отличное качество получаемых покрытий, уступило место ускоренному.
Ускоренное фосфатирование. Ускоренное фосфатирование обработка поверхности металла растворами монофосфатов цинка, содержащими окислители (нитрат и нитрит натрия) или соединения металлов (например, меди), которые имеют более положительный электронный потенциал, чем железо. Добавки окислителей и меди ускоряют фосфатирование до 210 мин.
Выпускаются готовые к применению жидкие фосфатирующие концентраты КФ1, КФЭ3, КФА5, КФ12 и др. Концентрат КФ1 имеет следующий состав, %:
Оксид цинка 13,7;
Ортофосфорная кислота, 87%-я 31,9;
Азотная кислота, 57%-я 14,3;
Вода 40,1.
Он служит исходным материалом для приготовления готовых фосфатирующих растворов. С этой целью концентрат КФ1 разбавляют водой и раствор доводят до требуемой кислотности (Ко=1020 точек, Кс=0,53,5 точек) с помощью едкого натра или фосфорной кислоты; дополнительно перед началом и в процессе фосфатирования вводят нитрит натрия (0,10,15 г/л).
Ускоренное фосфатирование проводят при 5090С струйным методом или погружением изделий в ванны. Продолжительность процесса при струйной обработке 1,52 мин., в ваннах 810 мин. Поверхность металла предварительно промывают раствором активатора АФ1 или АФ4 с концентрацией 0,51,0 г/л. Это ускоряет процесс и способствует более направленной кристаллизации фосфатов.
Лучшими являются плотные мелкокристаллические фосфатные покрытия с массой 1м2 2,53,5 г. Такие покрытия, в частности, образуются при использовании концентрата КФ12. Они удобны для последующего нанесения лакокрасочных материалов способом электроосаждения. Вследствие пористости фосфатных слоев поверхность после фосфатирования пассивируют растворами хроматоров или состава КП2А.
Холодное фосфатирование. Холодное фосфатирование применяют при подготовке поверхности крупногабаритных изделий. Для обработки используют растворы или пасты (растворы, загущенные наполнителями, например, тальком). Растворы для холодного фосфатирования отличаются повышенным содержанием солей (концентрация Zn(H2PO4)2 достигает 100 г/л) и соответственно более высокой кислотностью (Ко=7078 точек). При 2025С продолжительность фосфатирования составляет 2040мин.
Аморфное фосфатирование. Аморфное фосфатирование в отличие от кристаллического, связано с использованием в качестве фосфатирующих агентов фосфорных кислот и их кислых натриевых или аммониевых солей, например, NaH2PO4, (NH4)2HPO4, Na2H2P2O7. Применяют растворы с концентрацией 215 г/л и рН=56. При 6080С время обработки составляет несколько минут.
Аморфный фосфатный слой образуется в результате растворения металла по реакции:
3Fe + 4NaH2PO4 = Fe3(PO4)2 + 2Na2HPO4 + 3H2.
Толщина фосфатного слоя обычно не превышает 1мкм. По защитной способности аморфные покрытия уступают кристаллическим. Однако по сравнению с нефосфатированным металлом их пассивность выше и лучше смачиваемость лакокрасочными материалами. Аморфное фосфатирование применяют для изделий, к которым не предъявляются высокие требования в отношении коррозионной защиты.
Фосфатировать можно не только черные, но и цветные металлы. Например, для алюминия и его сплавов применяют цинк–фосфатные растворы и ортофосфорную кислоту. В их состав вводят соединения фтора (NaF, Na2SiF6, NH4F), выполняющие роль комплексообразователей для ионов А13+. Технологический процесс фосфатирования в этом случае аналогичен процессу фосфатирования стали.
Более перспективным является интенсифицированный процесс подготовки поверхности металлов использованием материалов, позволяющих совмещать различные технологические операции в одной. Примером может служить состав КФА8, обеспечивающий одновременное обезжиривание и аморфное фосфатирование черных и цветных металлов, температура обработки 5070С, продолжительность 2,55,0 мин.
Применение растворов полифосфатов в органических растворителях позволило совместить проведение процессов обезжиривания и фосфатирования металлов в одной операции, осуществляя их при комнатной температуре. Этот способ обработки называют – плафоризация. Для фосфатирования рулонного металла разработан быстродействующий состав КФ6; время обработки 1020 с.
Оксидирование – процесс создания на поверхности металла искусственной защитной пленки.
Для этого применяют следующие методы:
1) термический – окисление металла кислородом воздуха при умеренно высоких температурах; метод имеет ограниченное применение;
2) химический – окисление металла в жидких средах;
3) электрохимический – окисление кислородом воздуха, образующимся на поверхности металла в результате электрохимического процесса.
Оксидируют как черные (сталь), так и цветные металлы. Цель оксидирования – улучшить декоративные и защитные свойства металлов. Оксидные покрытия применяют в комбинации с лакокрасочными покрытиями и самостоятельно. Будучи подслоем, они улучшают адгезию покрытий, повышают их срок службы.
По защитной (противокоррозионной) способности оксидные покрытия, однако, уступают фосфатным. Поэтому оксидирование чаще применяют при окрашивании цветных металлов, черные металлы преимущественно фосфатируют.
Химическое оксидирование черных металлов проводят в щелочных средах. Окислителями служат нитраты, нитриты, хроматы и перманганаты щелочных металлов. Рецептуры составов для оксидирования крайне разнообразны. В качестве примера можно привести состав для получения блестящих покрытий:
г/1л воды
едкий натр 750;
нитрит натрия 100;
нитрат натрия 100.
В этом растворе изделия нагревают до 138145С. Продолжительность обработки стальных изделий составляет 12 ч. Щелочному оксидированию подвергают детали оптических приборов, фотоаппаратов, ружей, слесарный инструмент и т. д. Вместо лакокрасочных покрытий на поверхность с целью улучшения защитных свойств нередко наносят пушечную или другую смазку.
Из цветных металлов химическому оксидированию чаще всего подвергают алюминий, магний, медь, цинк и их сплавы. В качестве окислителей применяют хромовую кислоту и ее соли, нитраты и персульфаты щелочных металлов. Оксидирование проводят в кислой или щелочной среде.
Разновидностью оксидирования является хроматирование. Оно широко применяется для получения лакокрасочных покрытий. Так, для предварительной обработки листовой стали, ленты и стальных труб, подвергаемых окрашиванию, применяют хроматирующий состав «Сухром», оцинкованного стального проката – хроматирующие концентраты КХЦ1А, КХЦ1В, КХС1С, ленцы из алюминия и его сплавов – концентраты «Алькон1» и «Алькон1К».
Состав «Сухром» водный концентрат, содержит Cr6+, Cr3+ органические кислоты и их соединения с хромом. Рабочий раствор имеет рН=2,52,7. Его наносят на поверхность окунанием, распылением, щетками при температуре 2030С; продолжительность обработки 510с. Значительное повышение адгезии и защитных свойств лакокрасочных покрытий к поверхности алюминия и его сплавов (Амг, АМц) достигается при хроматно-фосфатной обработке. С этой целью используются растворы, содержащие хромовую, ортофосфорную и фтористоводородную кислоты, с общей концентрацией 70г/л. Обработку проводят при 3040С в течение 1030 с.
Оксидные покрытия получают не только химическим, но и электрохимическим способом. В частности, анодное оксидирование алюминия и его сплавов (АВ, АМг, Д1, Д6) проводят в сернокислотном, хромовокислом или щавелевокислом электролите.
В сернокислом электролите (20%-я H2SO4) процесс ведут при плотности тока 100200А/м2 и напряжении 1016В. Продолжительность обработки при нормальной температуре составляет 1850 мин. Образующиеся покрытия толщиной 46мкм обладают высоким электрическим сопротивлением и теплостойкостью до 1500С. Они пористы, легко сорбируют красители из водных растворов и впитывают жидкие лакокрасочные материалы, что способствует улучшению адгезии покрытий. Способность сорбировать красящие вещества широко используется для имитации под золото алюминия.
Независимо от типа металла и способа оксидирования изделия предварительно тщательно очищают от загрязнений, а по окончании процесса оксидирования промывают теплой водой и нередко пассивируют в растворах хромовой кислоты или бихроматов щелочных металлов.
- Предисловие
- Введение
- Глава 1. Основные сведения о лакокрасочных материалах
- 1.1. Классификация и обозначение лакокрасочных материалов
- Примеры обозначения лакокрасочных материалов.
- 1.2. Состав лакокрасочных материалов
- 1.2.1. Пигменты
- Пигменты
- 1.2.2. Удешевляющие добавки, наполнители
- 1.2.3. Растворители
- 1.2.4. Добавки
- Глава 2. Лакокрасочные материалы на основе поликонденсационных смол
- 2.1. Алкидные лакокрасочные материалы
- 1 Бункер для пигментов; 2 смеситель, быстроходный;
- 3 Смеситель напорный; 4, 5 бисерные мельницы;
- 6 Мерная емкость для лака; 7 хранилище одноколерных паст;
- 2.2. Свойства и применение алкидных лакокрасочных материалов
- 2.3. Карбамидо- и меламиноформальдегидные лакокрасочные материалы
- 2.3.1. Свойства и применение карбамидоформальдегидных
- 2.3.2. Меламиноформальдегидные лакокрасочные материалы
- 2.3.3. Фенолоформальдегидные лакокрасочные материалы
- 2.4. Алкидно-стирольные лакокрасочные материалы
- 2.4.1. Свойства и применение некоторых промышленных
- 2.4.2. Алкидно-акриловые эмали
- 2.5. Эпоксидные лакокрасочные материалы
- 2.6. Эпоксиэфирные лакокрасочные материалы
- 2.7. Полиэфирные лакокрасочные материалы
- 2.8. Полиуретановые лакокрасочные материалы
- 2.9. Кремнийорганические лакокрасочные материалы
- 2.10. Фуриловые лакокрасочные материалы (лаки и эмали)
- 2.11. Циклогексанонформальдегидные лаки
- Глава 3. Лакокрасочные материалы на основе полимеризационных смол
- 3.1. Перхлорвиниловые лакокрасочные материалы
- 1 Замесочная машина; 2 краскотерочная машина для получения подколеровочных паст; 3 дежа; 4 смеситель; 5 диссольвер;
- 6 Мельница; 7 бисерная мельница; 8 промежуточная емкость;
- 9 Мерник; 10 шестеренчатый насос; 11 фильтр
- 1 Замесочная машина; 2 краскотерочная машина; 3 дежа;
- 4 Смеситель для эмали; 5 промежуточная емкость для основы; 6 смеситель для пигментной пасты; 7 мерник; 8 – фильтр;
- 9 Шестеренчатый насос
- 3.1.1. Лакокрасочные материалы на основе
- 3.2. Лакокрасочные материалы на основе полиакрилатов
- 3.3. Лакокрасочные материалы на основе поливинилацеталей
- 3.4. Эмали на основе хлоркаучука
- 3.5. Лакокрасочные материалы на основе эфиров целлюлозы
- 1 Мерники на весах, 2 емкости промежуточные; 3 насос шестеренчатый; 4 – малаксер; 5 смеситель с планетарной мешалкой;
- 6 Смеситель с якорной мешалкой; 7 центрифуга типа сго-100
- 3.6. Лакокрасочные материалы на основе битумов
- 3.7. Лакокрасочные материалы на основе природных смол
- 3.7.1. Циклокаучуковые эмали
- 3.8. Фторопластовые лаки и эмали
- 3.9. Эмали на основе хлорсульфированного полиэтилена
- 3.10. Пластизоли и органозоли (поливинилхлоридные лакокрасочные материалы)
- 3.10.1. Состав пластизолей и органозолей
- 3.10.2. Получение пластизолей и органозолей
- 3.11. Масляные и алкидные краски
- 1 Замесочная машина; 2 дежа; 3 краскотерочная машина;
- 4 Смеситель; 5 – насос; 6 фильтр
- 3.12. Порошковые краски
- 1 Электродвигатель, 2 мешалка; 3 турбосмеситель; 4 затвор; 5 рукав;
- 6 Смеситель; 7 вибросито; 8 затвор шлюзовой
- 3.12.1. Получение, свойства и применение порошковых красок
- 1 Смеситель сухих компонентов; 2 питатель; 3 экструдер двухчервячный;
- 4 Охлаждающее устройство; 5 мельница грубого помола; 6 мельница тонкого помола; 7 фильтр
- 3.13. Водоэмульсионные краски
- 1 Смеситель для приготовления раствора добавок; 2 весы; 3 хранилище для эмульсии; 4 насос; 5 – фильтр сетчатый; 6 смеситель быстроходный;
- 7 Промежуточный смеситель; 8 бункер для пигментов; 9 бисерная мельница; 10 смеситель
- 3.14. Контроль качества в лакокрасочной промышленности
- 3.15. Стандартизированные методы испытаний лакокрасочных материалов и покрытий
- 3.16. Определение технологических свойств лакокрасочных материалов
- 3.16.1. Условная вязкость
- 3.16.2. Срок годности
- 3.16.3. Содержание летучих и нелетучих твердых
- 3.16.4. Степень перетира
- 3.16.5. Цвет непигментированных лакокрасочных материалов
- 3.16.6. Укрывистость
- 3.16.7. Разлив
- 3.16.8. Электрические свойства
- Глава 4. Лакокрасочные покрытия
- 4.1. Характеристика и классификация лакокрасочных покрытий
- Классификация лкп по внешнему виду. Внешний вид поверхности покрытия характеризуется цветом, фактурой, качеством исполнения покрытия наличием или отсутствием дефектов. Определения основных дефектов.
- Покрытий
- Примеры обозначения лакокрасочных покрытий:
- 4.2. Требования, предъявляемые к лакокрасочным
- 1 Ньютоновское течение; 2 дилатантное течение;
- 3 Псевдопластическое течение; 4 пластическое течение;
- 4.3. Поверхностное натяжение жидких лакокрасочных материалов
- 4.4. Свойства порошковых лакокрасочных материалов
- Глава 5. Взаимодействие лакокрасочных материалов с твердой поверхностью
- 5.1. Свойства твердой поверхности
- 5.2. Смачивание жидкими лакокрасочными материалами твердой поверхности
- 5.2.1. Формирование поверхности контакта
- 1 Подложка; 2 воздушные полости; 3 лакокрасочный материал
- 5.2.2. Смачивание поверхностей на воздухе
- 5.2.3. Смачивание увлажненных и погруженных в воду поверхностей
- Глава 6. Свойства и разновидности покрытий
- 6.1. Прочностные и деформационные свойства
- 6.2. Факторы, влияющие на механические свойства покрытий
- 6.3. Покрытия целевого назначения. Морозостойкие покрытия
- 6.4. Износостойкие покрытия
- 6.5. Вибропоглощающие покрытия
- 6.6. Кавитационностойкие покрытия
- 6.7. Методы определения механических свойств пленок
- 6.7.1. Адгезия
- 6.7.2. Природа адгезионных связей
- 6.7.3. Молекулярное взаимодействие
- 6.7.4. Хемосорбционное взаимодействие
- 6.7.5. Электростатическое взаимодействие
- 6.7.6. Диффузионное взаимодействие
- 6.7.7. Факторы, влияющие на адгезионную прочность покрытий
- 1 Поливинилбутираль; 2 поликапроамид; 3 пентапласт; 4 сэвилен
- 6.7.8. Длительная адгезионная прочность
- 6.7.9. Взаимодействие покрытий с гидрофильными веществами
- 6.7.10. Покрытия целевого назначения
- 6.7.11. Методы определения адгезионной прочности
- 6.8. Внутренние напряжения
- 6.8.1. Возникновение и релаксация внутренних напряжений
- 6.8.2. Факторы, влияющие на внутренние напряжения
- 6.9. Проницаемость покрытий
- 6.9.1. Перенос жидкостей и газов через пленки
- I покрытия с явной пористостью; II покрытия со скрытой пористостью;
- III беспористые покрытия
- 1 Масляное; 2 алкидное; 3 хлоркаучуковое;
- 4 Битумное
- 6.9.2. Факторы, влияющие на проницаемость
- 6.9.3. Методы определения проницаемости
- 6.10. Оптические свойства
- 6.10.1. Пропускание, поглощение и отражение света покрытиями
- I воздух; II пленка; III подложка
- 1 Полиакрилатного; 2 ацетилцеллюлозного; 3 меламиноалкидного;
- 4 Ацетилцеллюлозного с 0,3% 2-гидрокси-4-метоксибензофенона;
- 5 Ацетилцеллюлозного с 0,55 2,2-дигидрокси-4-метоксибензофенона
- 6.10.2. Покрытия как средство цветового оформления изделий и объектов
- 6.10.3. Покрытия целевого назначения
- 6.10.4. Методы определения оптических свойств покрытий
- 6.11. Электрические свойства
- Глава 7. Определение физико – механических свойств лакокрасочных покрытий
- 7.1. Получение свободных пленок
- 7.1.1. Получение лакокрасочных покрытий для испытаний
- 7.1.2. Толщина лакокрасочных покрытий
- 7.1.3. Прочность пленок при ударе
- 7.1.4. Твердость покрытия по маятниковому прибору
- Глава 8. Технология нанесения лакокрасочных материалов
- 8.1. Способы нанесения лакокрасочных материалов на поверхность
- 8.1.1. Классификация способов окрашивания
- 8.2. Пневматическое распыление
- 8.3. Электростатическое распыление
- 1 Окрасочная камера; 2 – пульт дистанционного управления;
- 6 Дозирующее устройство; 7 кенотронный выпрямитель тока;
- 8 Электростатический генератор; 9 – вытяжная вентиляция
- 8.4. Гидравлическое распыление
- 1 Корпус; 2 насос; 3 всасывающий клапан; 4 приемный шланг; 5 фильтр; 6 нагнетательный клапан; 7 сальник; 8 напорный шланг; 9 кран; 10 «удочка»; 11 форсунка
- 8.5. Окунание и облив
- 1 Ванна; 2 насос; 3 карман; 4 сточный лоток; 5 изделие
- 1 Подающие валки; 2 карандаш; 3 ванна с лакокрасочным материалом;
- 4 Ограничительные шайбы; 5 сушильный транспортер
- 8.6. Валковый способ
- 8.7. Электроосаждение
- 8.7.1. Электрофоретическое нанесение дисперсий
- 8.7.2. Электроосаждение лакокрасочных материалов из водных растворов
- 8.7.3. Лакокрасочные материалы при электроосаждении
- 8.7.4. Технология получения покрытий
- 12 Фильтр; 13 теплообменник
- 8.8. Получение покрытий способом электрополимеризации
- 8.9. Хемоосаждение
- 8.10. Ручные способы нанесения жидких лакокрасочных материалов
- Глава 9. Способы отверждения покрытий
- 9.1. Тепловое отверждение покрытий
- 9.1.1. Конвективный способ
- I подъем температуры, II собственно сушка, III охлаждение покрытия
- 9.1.2. Терморадиационный способ
- 1 Вентилятор; 2 воздушная завеса; 3 корпус камеры;
- 4 Рабочая зона; 5 излучатель; 6 тамбуры;
- 7 Конвейер; 8 изделие
- 9.1.3. Индукционный способ
- 9.2. Отверждение покрытий под действием уф излучения
- 9.3. Радиационное отверждение покрытий
- 1 Деталь мебели; 2 лаконаливная машина; 3 радиационно-химическая установка с ускорителями электронов
- Глава 10. Технология окрашивания металлов
- 10.1. Подготовка поверхности перед окрашиванием
- 10.1.1. Механические способы очистки
- 10.1.2. Термические способы очистки
- 10.1.3. Химические способы очистки
- Метасиликат натрия 3–5
- 10.1.4. Травление
- 10.1.5. Удаление старых покрытий
- 10.2. Нанесение конверсионных покрытий
- 10.3. Стадии технологического процесса получения покрытий
- 10.3.1. Грунтование
- 10.3.2. Шпатлевание
- 10.3.3. Нанесение верхних слоев покрытия
- 10.3.4. Шлифование и полирование
- Глава 11. Технология окрашивания неметаллических материалов
- 11.1 Окрашивание и лакирование древесины. Покрытия древесины: прозрачные и непрозрачные
- 11.1.1. Получение прозрачных покрытий
- 11.1.2. Получение непрозрачных покрытий
- 11.2. Окрашивание и лакирование кожи
- 11.2.1. Покрывное крашение
- 11.3. Окрашивание пластмасс и резины
- 11.4. Технология изготовления декоративных
- Литература
- Оглавление
- Химия и технология лакокрасочных материалов и покрытий
- 220050. Минск, Свердлова, 13а.
- 220600, Г. Минск, ул.Красная, 23. Заказ .