8.3. Электростатическое распыление
По значению и распространению в промышленности электростатическое распыление занимает одно из ведущих мест. Этот способ экономичен, обеспечивает хорошее качество покрытий, возможность автоматизации процесса и высокую производительность. Путем воздействия электрического поля на аэродинамичные частицы достигается практически полное осаждение распыляемого лакокрасочного материала на изделия (потери не 10%).
В электрическом поле можно окрашивать изделия I и II групп сложности, изготовленные из различных материалов, с применением стационарных и ручных установок. Особенно приемлем этот способ при окрашивании мелких изделий не очень сложной формы: деталей приборов, авто-, вело- и мотодеталей, электротехнических изделий, фурнитуры, бытовой техники, мебели, обуви и др. Его используют и при окрашивании средне- и крупногабаритных изделий, таких как кузова и кабины автомобилей, железнодорожные и трамвайные вагоны, автобусы. Хорошие результаты получены как при массовом, серийном производстве, так и при окрашивании единичных изделий. При применении стационарных установок существенно улучшаются санитарно-гигиенические условия труда, и повышается общая культура производства.
Недостатки: сложность и повышенная стоимость окрасочной аппаратуры, некоторые ограничения в использовании лакокрасочных материалов.
Основы способа. Сущность электростатического способа заключается в распылении лакокрасочного материала с одновременным сообщением образующимся аэрозольным частицам электрического заряда, благодаря чему они равномерно осаждаются на противоположно заряженном изделии.
При электростатическом нанесении приемлем любой способ образования аэрозолей, однако наиболее распространены механическое (центробежное), пневматическое и гидравлическое (безвоздушное) распыление. Возникновение заряда на частицах связано с наложением постоянного электрического поля высокого напряжения (50-140кВ), при этом изделие, как правило, заземляется.
Существует несколько способов зарядки аэрозольных частиц, определяющих различный подход к аппаратурному оформлению процессов. Практическое использование нашли два из них: ионный и контактный.
Ионная зарядка. Ионная зарядка (зарядка ионной адсорбцией) широко используется во многих аппаратах электронно-ионной технологии благодаря высокой эффективности и простоте процесса. Источником ионов обычно является коронный разряд, возникающий в пространстве между двумя электродами, например, между электродной сеткой, соединенной с источником высокого напряжения, и заземленным изделием. Одним из важных свойств коронного разряда является его способность сообщать заряд аэрозолю, находящемуся на некотором расстоянии от электрода.
Заряд возникает в результате адсорбции частицами аэрозоля ионов, возникающих при ионизации воздуха. Адсорбция происходит до тех пор, пока силы отталкивания между ионами, осевшими на частице, и силы притяжения ионов частицей не уравняются. Адсорбция ионов вызывает направленное движение аэрозольных частиц (капель) по силовым линиям поля в сторону окрашиваемого изделия (рис. 8.4).
Рис. 8.4. Схема ионной зарядки частиц:
1 – коронирующий электрод; 2 – молекулы газа; 3 – частица краски;
4 – изделие
М (8.5)
где диэлектрическая проницаемость лакокрасочного материала;
Е – напряженность поля в данной точке;
r радиус капли.
При этом напряженность поля для точечного заряда Q равна:
(8.6)
где диэлектрическая проницаемость среды (воздуха);
l расстояние от заряда до заземленного предмета.
Контактная зарядка. Контактная зарядка (или зарядка путем электростатической индукции) происходит в результате контакта лакокрасочного материала с острой кромкой распылителя, восполняющего одновременно роль коронирующего электрода. Для лучшей зарядки материала обычно выбирают электрод вытянутой формы, образующий кромку в виде острия. Чем меньше радиус распылителя, тем больше напряженность электрического поля в этом месте и легче возникает коронный заряд, вызывающий распыление и зарядку материала. Коронный разряд образуется на острие кромки электрода, если напряженность поля достигает 3 МВ/м. При этом электрические заряды интенсивно стекают в воздух, вызывая его ионизацию в прилегающем к электроду пространстве.
При подключении высокого напряжения к коронирующему электроду на острие его кромки создается поверхностный заряд большой плотности. Если на такую кромку подать тонкий слой лакокрасочного материала, то он будет заряжаться и под влиянием сил электрического поля вытягиваться и стекать с поверхности в направлении заземленного изделия (рис. 8.5).
Рис. 8.5. Схема электростатического распыления и контактной зарядки частиц:
1 – коронирующий электрод; 2 – слой лакокрасочного материала;
3 – изделие
Образуются направленный движущийся аэрозоль заряженных частиц (капель) лакокрасочного материала.
Заряд капли аэрозоля, полученный при контактной зарядке, определяется из уравнения:
(8.7)
где U – напряжение, подаваемое на электрод;
Uк - напряжение тока, составляющее появлению тока коронного разряда;
- радиус закругления кромки распылителя;
l - расстояние от распылителя до изделия;
А – расчетная постоянная;
диэлектрическая проницаемость лакокрасочного материала;
удельное объемное электрическое сопротивление лакокрасочного материала.
Как следует из формулы (8.7), заряд возрастает с повышением приложенного напряжения и уменьшается при увеличении l, , , . Заряд растет так же пропорционально квадрату радиуса капли. Однако масса капли, определяющая кинетическую устойчивость аэрозоля, увеличивается еще быстрее – пропорционально кубу радиуса.
Поэтому высокая степень диспергирования лакокрасочного материала благоприятно сказывается на распылении.
При контактной зарядке лакокрасочного материала заряд аэрозольных частиц в 10–30 раз больше, чем при ионной, поэтому промышленные электроокрасочные установки работают преимущественно с использованием контактного способа зарядки.
Зарядка капель способствует не только их дроблению и направленному движению, но и образованию частиц. В отличие от пневматического при электростатическом распылении факел образуется в результате взаимного отталкивания одноименно заряженных капель. Угол между образующими факела являются функцией напряженности поля Е, радиуса r и заряда Q капли:
Большой угол факела не всегда желателен, т.к. возрастают потери лакокрасочного материала за счет уноса вентиляцией. Поэтому на практике используют различные способы фокусирования материалов с учетом габарита и формы покрываемых изделий.
Заряженные частицы, образующиеся при распылении в электрическом поле, двигаются к поверхности окрашиваемого изделия по определенной траектории. Она формируется под влиянием действующих на частицу сил:
(8.8)
где Fq сила тяжести;
Fk сила, обусловленная действием электрического поля, Fk = Eq max;
FE сила, обусловленная неравномерным распределением напряженности электрического поля;
Fc - сила взаимодействия частицы с другими, близко находящимися частицами.
Противодействующей движению является сила, обусловленная сопротивлением воздуха перемещению частицы. Скорость движения падает пропорционально логарифму радиуса частицы. Так, при максимальной напряженности поля 0,5 МВ/м скорость перемещения частицы радиусом 100 мкм не превышает 1 м/с. Крупные частицы с большой массой, получившие небольшой заряд, при движении могут отклониться настолько, что выпадут из-под влияния электрического поля и будут унесены вентиляцией, не достигнув поверхности изделия.
Разрядка частиц завершает цикл процессов, связанных с переносом вещества в поле коронного разряда, и является одновременно процессом астабилизации дисперсии. Наряду с переходом капель в нейтральное состояние (в результате стекания зарядов на заземленное изделие) происходит их слияние; вязкость образующейся жидкой пленки непрерывно увеличивается вследствие испарения растворителя, соответственно изменяются и электрические параметры слоя.
П ри прямом контакте капель с поверхностью скорость их разрядки определяется собственной проводимостью материала: чем больше (или чем меньше ), тем быстрее и полнее происходит стекание зарядов. Таким образом, удельное объемное сопротивление на разных стадиях нанесения лакокрасочных материалов играет двоякую роль: с его ростом облегчается зарядка аэрозольных частиц и одновременно затрудняется их разрядка.
Если краска осаждается на уже осевший слой лакокрасочного материала или на предварительно окрашенную (загрунтованную) поверхность, то определяющее влияние на разрядку оказывает сопротивление этого слоя. При большом сопротивлении происходит накопление зарядов на поверхности, осаждения лакокрасочного материала при этом заключается или полностью прекращается.
Поэтому на практике в зависимости от электрического сопротивления пленки наносят 1–3 слоя лакокрасочных материалов. Часто предусматривается нанесение сдвоенных слоев: последующий слой наносят на предыдущий, имеющий относительно низкое значение .
Нанесение лакокрасочных материалов в автоматизированных установках. Положительные качества электростатического распыления наиболее полно проявляются при использовании стационарных установок, работающих в автоматическом режиме.
Рис. 8.6. Принципиальная схема стационарной электроокрасочной установки:
- Предисловие
- Введение
- Глава 1. Основные сведения о лакокрасочных материалах
- 1.1. Классификация и обозначение лакокрасочных материалов
- Примеры обозначения лакокрасочных материалов.
- 1.2. Состав лакокрасочных материалов
- 1.2.1. Пигменты
- Пигменты
- 1.2.2. Удешевляющие добавки, наполнители
- 1.2.3. Растворители
- 1.2.4. Добавки
- Глава 2. Лакокрасочные материалы на основе поликонденсационных смол
- 2.1. Алкидные лакокрасочные материалы
- 1 Бункер для пигментов; 2 смеситель, быстроходный;
- 3 Смеситель напорный; 4, 5 бисерные мельницы;
- 6 Мерная емкость для лака; 7 хранилище одноколерных паст;
- 2.2. Свойства и применение алкидных лакокрасочных материалов
- 2.3. Карбамидо- и меламиноформальдегидные лакокрасочные материалы
- 2.3.1. Свойства и применение карбамидоформальдегидных
- 2.3.2. Меламиноформальдегидные лакокрасочные материалы
- 2.3.3. Фенолоформальдегидные лакокрасочные материалы
- 2.4. Алкидно-стирольные лакокрасочные материалы
- 2.4.1. Свойства и применение некоторых промышленных
- 2.4.2. Алкидно-акриловые эмали
- 2.5. Эпоксидные лакокрасочные материалы
- 2.6. Эпоксиэфирные лакокрасочные материалы
- 2.7. Полиэфирные лакокрасочные материалы
- 2.8. Полиуретановые лакокрасочные материалы
- 2.9. Кремнийорганические лакокрасочные материалы
- 2.10. Фуриловые лакокрасочные материалы (лаки и эмали)
- 2.11. Циклогексанонформальдегидные лаки
- Глава 3. Лакокрасочные материалы на основе полимеризационных смол
- 3.1. Перхлорвиниловые лакокрасочные материалы
- 1 Замесочная машина; 2 краскотерочная машина для получения подколеровочных паст; 3 дежа; 4 смеситель; 5 диссольвер;
- 6 Мельница; 7 бисерная мельница; 8 промежуточная емкость;
- 9 Мерник; 10 шестеренчатый насос; 11 фильтр
- 1 Замесочная машина; 2 краскотерочная машина; 3 дежа;
- 4 Смеситель для эмали; 5 промежуточная емкость для основы; 6 смеситель для пигментной пасты; 7 мерник; 8 – фильтр;
- 9 Шестеренчатый насос
- 3.1.1. Лакокрасочные материалы на основе
- 3.2. Лакокрасочные материалы на основе полиакрилатов
- 3.3. Лакокрасочные материалы на основе поливинилацеталей
- 3.4. Эмали на основе хлоркаучука
- 3.5. Лакокрасочные материалы на основе эфиров целлюлозы
- 1 Мерники на весах, 2 емкости промежуточные; 3 насос шестеренчатый; 4 – малаксер; 5 смеситель с планетарной мешалкой;
- 6 Смеситель с якорной мешалкой; 7 центрифуга типа сго-100
- 3.6. Лакокрасочные материалы на основе битумов
- 3.7. Лакокрасочные материалы на основе природных смол
- 3.7.1. Циклокаучуковые эмали
- 3.8. Фторопластовые лаки и эмали
- 3.9. Эмали на основе хлорсульфированного полиэтилена
- 3.10. Пластизоли и органозоли (поливинилхлоридные лакокрасочные материалы)
- 3.10.1. Состав пластизолей и органозолей
- 3.10.2. Получение пластизолей и органозолей
- 3.11. Масляные и алкидные краски
- 1 Замесочная машина; 2 дежа; 3 краскотерочная машина;
- 4 Смеситель; 5 – насос; 6 фильтр
- 3.12. Порошковые краски
- 1 Электродвигатель, 2 мешалка; 3 турбосмеситель; 4 затвор; 5 рукав;
- 6 Смеситель; 7 вибросито; 8 затвор шлюзовой
- 3.12.1. Получение, свойства и применение порошковых красок
- 1 Смеситель сухих компонентов; 2 питатель; 3 экструдер двухчервячный;
- 4 Охлаждающее устройство; 5 мельница грубого помола; 6 мельница тонкого помола; 7 фильтр
- 3.13. Водоэмульсионные краски
- 1 Смеситель для приготовления раствора добавок; 2 весы; 3 хранилище для эмульсии; 4 насос; 5 – фильтр сетчатый; 6 смеситель быстроходный;
- 7 Промежуточный смеситель; 8 бункер для пигментов; 9 бисерная мельница; 10 смеситель
- 3.14. Контроль качества в лакокрасочной промышленности
- 3.15. Стандартизированные методы испытаний лакокрасочных материалов и покрытий
- 3.16. Определение технологических свойств лакокрасочных материалов
- 3.16.1. Условная вязкость
- 3.16.2. Срок годности
- 3.16.3. Содержание летучих и нелетучих твердых
- 3.16.4. Степень перетира
- 3.16.5. Цвет непигментированных лакокрасочных материалов
- 3.16.6. Укрывистость
- 3.16.7. Разлив
- 3.16.8. Электрические свойства
- Глава 4. Лакокрасочные покрытия
- 4.1. Характеристика и классификация лакокрасочных покрытий
- Классификация лкп по внешнему виду. Внешний вид поверхности покрытия характеризуется цветом, фактурой, качеством исполнения покрытия наличием или отсутствием дефектов. Определения основных дефектов.
- Покрытий
- Примеры обозначения лакокрасочных покрытий:
- 4.2. Требования, предъявляемые к лакокрасочным
- 1 Ньютоновское течение; 2 дилатантное течение;
- 3 Псевдопластическое течение; 4 пластическое течение;
- 4.3. Поверхностное натяжение жидких лакокрасочных материалов
- 4.4. Свойства порошковых лакокрасочных материалов
- Глава 5. Взаимодействие лакокрасочных материалов с твердой поверхностью
- 5.1. Свойства твердой поверхности
- 5.2. Смачивание жидкими лакокрасочными материалами твердой поверхности
- 5.2.1. Формирование поверхности контакта
- 1 Подложка; 2 воздушные полости; 3 лакокрасочный материал
- 5.2.2. Смачивание поверхностей на воздухе
- 5.2.3. Смачивание увлажненных и погруженных в воду поверхностей
- Глава 6. Свойства и разновидности покрытий
- 6.1. Прочностные и деформационные свойства
- 6.2. Факторы, влияющие на механические свойства покрытий
- 6.3. Покрытия целевого назначения. Морозостойкие покрытия
- 6.4. Износостойкие покрытия
- 6.5. Вибропоглощающие покрытия
- 6.6. Кавитационностойкие покрытия
- 6.7. Методы определения механических свойств пленок
- 6.7.1. Адгезия
- 6.7.2. Природа адгезионных связей
- 6.7.3. Молекулярное взаимодействие
- 6.7.4. Хемосорбционное взаимодействие
- 6.7.5. Электростатическое взаимодействие
- 6.7.6. Диффузионное взаимодействие
- 6.7.7. Факторы, влияющие на адгезионную прочность покрытий
- 1 Поливинилбутираль; 2 поликапроамид; 3 пентапласт; 4 сэвилен
- 6.7.8. Длительная адгезионная прочность
- 6.7.9. Взаимодействие покрытий с гидрофильными веществами
- 6.7.10. Покрытия целевого назначения
- 6.7.11. Методы определения адгезионной прочности
- 6.8. Внутренние напряжения
- 6.8.1. Возникновение и релаксация внутренних напряжений
- 6.8.2. Факторы, влияющие на внутренние напряжения
- 6.9. Проницаемость покрытий
- 6.9.1. Перенос жидкостей и газов через пленки
- I покрытия с явной пористостью; II покрытия со скрытой пористостью;
- III беспористые покрытия
- 1 Масляное; 2 алкидное; 3 хлоркаучуковое;
- 4 Битумное
- 6.9.2. Факторы, влияющие на проницаемость
- 6.9.3. Методы определения проницаемости
- 6.10. Оптические свойства
- 6.10.1. Пропускание, поглощение и отражение света покрытиями
- I воздух; II пленка; III подложка
- 1 Полиакрилатного; 2 ацетилцеллюлозного; 3 меламиноалкидного;
- 4 Ацетилцеллюлозного с 0,3% 2-гидрокси-4-метоксибензофенона;
- 5 Ацетилцеллюлозного с 0,55 2,2-дигидрокси-4-метоксибензофенона
- 6.10.2. Покрытия как средство цветового оформления изделий и объектов
- 6.10.3. Покрытия целевого назначения
- 6.10.4. Методы определения оптических свойств покрытий
- 6.11. Электрические свойства
- Глава 7. Определение физико – механических свойств лакокрасочных покрытий
- 7.1. Получение свободных пленок
- 7.1.1. Получение лакокрасочных покрытий для испытаний
- 7.1.2. Толщина лакокрасочных покрытий
- 7.1.3. Прочность пленок при ударе
- 7.1.4. Твердость покрытия по маятниковому прибору
- Глава 8. Технология нанесения лакокрасочных материалов
- 8.1. Способы нанесения лакокрасочных материалов на поверхность
- 8.1.1. Классификация способов окрашивания
- 8.2. Пневматическое распыление
- 8.3. Электростатическое распыление
- 1 Окрасочная камера; 2 – пульт дистанционного управления;
- 6 Дозирующее устройство; 7 кенотронный выпрямитель тока;
- 8 Электростатический генератор; 9 – вытяжная вентиляция
- 8.4. Гидравлическое распыление
- 1 Корпус; 2 насос; 3 всасывающий клапан; 4 приемный шланг; 5 фильтр; 6 нагнетательный клапан; 7 сальник; 8 напорный шланг; 9 кран; 10 «удочка»; 11 форсунка
- 8.5. Окунание и облив
- 1 Ванна; 2 насос; 3 карман; 4 сточный лоток; 5 изделие
- 1 Подающие валки; 2 карандаш; 3 ванна с лакокрасочным материалом;
- 4 Ограничительные шайбы; 5 сушильный транспортер
- 8.6. Валковый способ
- 8.7. Электроосаждение
- 8.7.1. Электрофоретическое нанесение дисперсий
- 8.7.2. Электроосаждение лакокрасочных материалов из водных растворов
- 8.7.3. Лакокрасочные материалы при электроосаждении
- 8.7.4. Технология получения покрытий
- 12 Фильтр; 13 теплообменник
- 8.8. Получение покрытий способом электрополимеризации
- 8.9. Хемоосаждение
- 8.10. Ручные способы нанесения жидких лакокрасочных материалов
- Глава 9. Способы отверждения покрытий
- 9.1. Тепловое отверждение покрытий
- 9.1.1. Конвективный способ
- I подъем температуры, II собственно сушка, III охлаждение покрытия
- 9.1.2. Терморадиационный способ
- 1 Вентилятор; 2 воздушная завеса; 3 корпус камеры;
- 4 Рабочая зона; 5 излучатель; 6 тамбуры;
- 7 Конвейер; 8 изделие
- 9.1.3. Индукционный способ
- 9.2. Отверждение покрытий под действием уф излучения
- 9.3. Радиационное отверждение покрытий
- 1 Деталь мебели; 2 лаконаливная машина; 3 радиационно-химическая установка с ускорителями электронов
- Глава 10. Технология окрашивания металлов
- 10.1. Подготовка поверхности перед окрашиванием
- 10.1.1. Механические способы очистки
- 10.1.2. Термические способы очистки
- 10.1.3. Химические способы очистки
- Метасиликат натрия 3–5
- 10.1.4. Травление
- 10.1.5. Удаление старых покрытий
- 10.2. Нанесение конверсионных покрытий
- 10.3. Стадии технологического процесса получения покрытий
- 10.3.1. Грунтование
- 10.3.2. Шпатлевание
- 10.3.3. Нанесение верхних слоев покрытия
- 10.3.4. Шлифование и полирование
- Глава 11. Технология окрашивания неметаллических материалов
- 11.1 Окрашивание и лакирование древесины. Покрытия древесины: прозрачные и непрозрачные
- 11.1.1. Получение прозрачных покрытий
- 11.1.2. Получение непрозрачных покрытий
- 11.2. Окрашивание и лакирование кожи
- 11.2.1. Покрывное крашение
- 11.3. Окрашивание пластмасс и резины
- 11.4. Технология изготовления декоративных
- Литература
- Оглавление
- Химия и технология лакокрасочных материалов и покрытий
- 220050. Минск, Свердлова, 13а.
- 220600, Г. Минск, ул.Красная, 23. Заказ .