4.Понятие о жидкости (газе), как сплошной среды. Теплофизические свойства капельных, газообразных сред.
Жидкостью будем называть СС, обладающую свойством текучести, т.е. допускающую неограниченное изменение формы под действием сколь угодно малых сил.
Жидкость бывает 2-х видов: 1. Несжимаемая (капельная ρ=const); 2.Сжимаемая (газообразная ρ#const; ρ(P,T)).
В гидравлике принято жидкость считать сплошной средой состоящей из отдельных частиц, т. е. жидкость представляет собой макроструктуру. В капельной жидкости расстояние между частицами весьма малы, поэтому силы сцепления велики. А у газов расстояние между частицами велики, поэтому силы сцепления являются малыми.
Основные теплофизические свойства жидкости:
1.Плотность (ρ) характеризует количество покоящейся массы (m) вещества, выраженной в единице объёма (w), [кг/м3; г/см3] [ρ] = Кг / м3 ρ = m / w где m – масса, w – объем
2.Удельный вес [γ] = Н / м2 γ = (m * g) / w где g – ускорение свободного падения
3.Сжимаемость
Коэф. сжимаемости [βр] = 1 / Па βр = (1 / w)*(dw / dp)
Модуль упругости [E] = Па Е = 1 / βр
Коэф. температурного расширения [βт] = 1 / °С βт = (1 / w)*(dw / dт)
4. Вязкость - свойство жидкости или газа оказывать сопротивление перемещению одних ее частиц относительно других. Вязкость зависит от силы взаимодействия между молекулами жидкости (газа).
Для характеристики этих сил используется коэффициент динамической вязкости ( )
Динамическая вязкость определяется по уравнению Ньютона: F / A = μ *(dv / dy) где, А – площадь перемещающихся слоёв жидкости; F – сила, требующаяся для поддержания разницы скоростей движения между слоями на величину dv; dy – расстояние между движущимися слоями жидкости; dv – разность скоростей движущихся слоёв жидкости; μ – коэффициент пропорциональности, динамическая вязкость. Величина dx/dy характеризует сдвиг (γ) слоев, деформацию. Соотношение F/A – есть величина касательного напряжения (τ), развиваемое в движущихся слоях жидкости. Размерность динамической вязкости определяется из уравнения Ньютона: система СИ → [Пас, мПас]; 1 сПз = 10–3∙кг/м ∙с = 10–3∙Па ∙с; [μ] = Н * с / м2.
Вязкость жидкости характеризуется также коэффициентом кинематической вязкости, которая характеризует свойство жидкости оказывать сопротивление перемещению одной части жидкости относительно другой с учётом силы тяжести: т.е. отношением динамической вязкости к плотности жидкости. [ν] = м2 / c; ν = μ / ρ
За единицу в этом случае принят м2/с. Из анализа следует, что с возрастанием температуры средняя длина свободного пробега молекул и средняя скорость движения молекул увеличиваются, а, следовательно, и вязкость газа возрастает, несмотря на уменьшение величины плотности.
Вязкость сильно зависит от Т и слабо от Р. У капельной жидкости с повышением Т вязкость уменьшается, а у газообразной - наоборот. Единицы измерения кинематической вязкости: система СИ→ [м2/с, см2/с, мм2/с]; 1сСт = 10–2 Ст = 10–6 м2/с = 1мм2/с.
Текучесть () – это величина обратная вязкости и связанная с ней соотношением: .
Под теплоёмкостью (cр) понимается количество теплоты (dQ), которое необходимо передать единице массы этого вещества (М), чтобы повысить его температуру (dT) на 1 Цельсия или Кельвина cр = dQ / M · dT
Величина теплоёмкости зависит от температуры, поэтому каждое её значение необходимо относить к определенной температуре (сt) или к интервалу температур. Для повышения температуры нефти объёма V плотностью ρ от температуры Т1 до Т2 необходимо затратить количество энергии Q, равное: Q =ρ·c·(Т2 – Т1)·V.
Теплопроводность определяет перенос энергии от более нагретых участков жидкости к более холодным.
Коэффициент теплопроводности () описывается законом теплопроводности Фурье и характеризует количество теплоты (dQ), переносимой в веществе через единицу площади (S) в единицу времени (t) при градиенте температуры (dT/dx), равном единице:
- Экзаменационный билет № 1
- 1 Порядок обозначения трассы мнгп на местности, на переходах через реки и озера, автомобильные и железные дороги
- 2.Технологическая схема мн
- 4.Понятие о жидкости (газе), как сплошной среды. Теплофизические свойства капельных, газообразных сред.
- Экзаменационный билет № 2
- Периодичность очистки
- 2: Декларация о намерениях, обоснование инвестиций.
- 3: Генеральный план нпс.
- 4: Понятие о многокомпонентных и многофазных средах. Определение однородной и неоднородной, изотропной и анизотропной сплошной среды.
- Экзаменационный билет №3
- 1.Минимально и максимально-допустимые значения защитных потенциалов на подземных стальных коммуникациях объектов трубопроводного транспорта нефти и газа. Опасность явлений недозащиты и перезащиты.
- 2 Стадийность проектирования.
- 3.Технологическая схема нпс
- 4 Простейшие модели жидких и газообразных сплошных сред: идеальная, вязкая ,несжимаемая ,сжимаемая , ньютоновская , упругая, с тепловым расширением, совершенного и реального газов.
- Экзаменационный билет № 4
- 1. Схема возникновения блуждающих токов на магистральных нефтегазопроводах.
- 2. Гидравлический расчет нефтепровода
- 3.Общецеховая маслосистема компрессорной станции
- Экзаменационный билет №5
- 1. Характеристика стальных труб: ударная вязкость kcu, kcv, эквивалент углерода, процент волокна в изломе образцов двтт, временное сопротивление, предел текучести
- 2.. Определение числа нпс и их расстановка по трассе
- 3 Системы перекачки нефти и нефтепродуктов
- 4. Виды движения сплошных сред: неустановившееся, пространственное, плоское, одномерное.
- Экзаменационный билет №6
- Оценить свариваемость трубных сталей 17г2сф, 09г2сф
- Системы календарного планирования и контроля реализации проектов.
- Установки подготовки топливного и пускового газа.
- Характеристики смеси: плотность, скорость (барицентрическая, среднемассовая, диффузионная
- Экзаменационный билет №7
- 1Критерии очистки полости нгп от парафина, грунта, металла
- 2 Диаграммы применяемые для управления проектами.
- Сеть предшествования
- 4 Понятие о массовых и поверхностных, внутренних и внешних силах. Тензор напряжений и его свойства.
- Экзаменационный билет №8
- 1.Определение (предельного) допустимого давления в трубе с опасным дефектом геометрии. Расчет коэффициента снижения рабочего давления.
- 3.Системы охлаждения технологического газа на компрессорных станциях.
- 4.Обобщенный закон Ньютона. Уравнения движения вязкой жидкости Навье - Стокса. Обобщенный закон Ньютона
- Экзаменационный билет № 9
- 2.Процесс контроля исполнения и управления проектом.
- 3.Конструкция и компоновка насосного цеха.
- 4. Модель идеальной жидкости. Уравнения движения Эйлера.
- 1.Ремонтные конструкции для нгп постоянного и временного ремонта
- 3.Системы очистки технологического газа
- 4.Уравнение Бернулли для идеальной и вязкой жидкости. Геометрическая и энергетическая интерпретация слагаемых уравнения Бернулли.
- 1.Порядок производства вскрышных работ на действующих нгп
- 2. Парафинизация нефтепровода
- 4.Термодинамические силы и потоки. Законы молекулярного переноса тепла и массы в исследовании процессов тепломассообмена в сплошных средах.
- 1 Порядок врезки вантузов на действующем нп. Применяемое оборудование
- 2. Система смазки и охлаждения подшипников насосных агрегатов.
- Определение оптимальной периодичности очистки
- Понятие о формуле размерности, критериях и числах подобия
- Гидравлические испытания линейной части действующих нефтепроводов
- Технологическая схема газотурбинного компрессорного цеха с неполнонапорными центробежными нагнетателями
- Нормативно-техническая и законодательная база систем проектирования и организации строительства объектов
- Понятие о массовых и поверхностных, внутренних и внешних силах. Тензор напряжения и его свойства.
- Порядок вырезки дефектного участка с помощью труборезов типа мрт. Преимущества и недостатки труборезов мрт перед вырезкой с помощью кумулятивных зарядов.
- Технологическая схема газотурбинного компрессорного цеха с полнонапорными центробежными нагнетателями.
- Особенности последовательной перекачки нефтей и нефтепродуктов.
- Закономерности гидродинамики и теплообмена при ламинарном течении вязкого потока в трубах. Понятие о пограничном слое.
- . № Экзаменационный билет № 15
- Порядок вырезки дефектного участка с помощью кумулятивных зарядов. Преимущества и недостатки вырезки дефектных участков с помощью кумулятивных зарядов по сравнению с труборезами.
- 2. Средства контроля и защиты насосного агрегата
- 3. Механизм образования парафиновых отложений
- 4. Точные решения уравнений движения вязкой жидкости. Законы гидравлического сопротивления трения.
- Экзаменационный билет № 16
- 1. Многоразовый герметизатор «Кайман». Преимущества перед пзу, глиняными тампонами
- 2. Компоновка компрессорных цехов
- Коэффициент гидравлической эффективности участка мн
- 4. Технологический расчёт трубопровода. Базисные формулы трения, гидравлический уклон, влияние геометрии на режим течения. Потери на трение, местные сопротивления.
- Экзаменационный билет № 17
- 1.Конструкции и порядок работы механических и мембранных дыхательных клапанов рвс
- 2. Средства измерения количества нефти на нпс, конструктивные особенности и области применения
- 3. Особенности перекачки высоковязких и высокозастывших нефтей.
- 4.Понятие о турбулентном течении. Подход Рейнольдса к описанию сложного сдвигового течения, его динамические уравнения.
- Экзаменационный билет № 18
- Генеральные планы компрессорных станций
- 4. Виды потерь напора: потери по длине и потери в местных сопротивлениях.
- Экзаменационный билет № 19
- Изоляция сварных кольцевых стыков труб с заводской изоляцией в полевых условиях с помощью термоусаживающихся манжет.
- 3. Основные этапы подготовки нефти и газа до товарных качеств.
- Экзаменационный билет № 20
- 1. Схема компенсации намагниченности мнгп с помощью источников постоянного тока, с помощью постоянных магнитов
- 2. Компрессорные станции с центробежными газотурбинными гпа.
- 3. Эквивалентным диаметром
- 4. Виды движения сплошных сред: неустановившееся, пространственное, плоское, одномерное.
- Экзаменационный билет № 21
- 2 Система сглаживания волн давления.
- 3. Совместная работа насосных станций и линейной части
- 4. Характеристики смеси: плотность, скорость (барицентрическая, среднемассовая, диффузионная).
- Экзаменационный билет № 22
- Конструкция и работа предохранительного гидравлического клапана (кпг).
- 3.Изменение основных технологических параметров перекачки при снижении эффективности работы линейной части.
- 4.Понятие о жидкости (газе), как сплошной среды. Теплофизические свойства капельных, газообразных сред.
- 86. Виды движения сплошных сред: неустановившееся, пространственное, плоское, одномерное.
- 87. Модель вязкой ньютоновской и неньютоновской жидкости
- 89. Установки подготовки топливного и пускового газа.
- 90. Ремонтные конструкции для нгп постоянного и временного ремонта
- 91. Коэффициент гидравлической эффективности участка мн
- 92. Особенности перекачки высоковязких и высокозастывших нефтей.
- 93. Системы очистки технологического газа
- 94. Технологическая схема нпс
- 95. Компрессорные станции с центробежными газотурбинными гпа.