§ 11.3. Пожарная профилактика средств перемещения твердых веществ
Устройства транспортировки твердых веществ могут быть непрерывными и периодическими; горизонтальными, вертикальными и смешанными. Повышенную пожарную опасность представляют устройства непрерывной транспортировки сыпучих материалов: транспортеры, элеваторы, самотечные и пневматические трубы.
Транспортеры бывают ленточные, пластинчатые, скребковые, винтовые, вибрационные. Наиболее широко применяются ленточные транспортеры (рис 11.2). Лента 5 приводится в движение ведущим барабаном /.
Рис. 11.2. Схема ленточного транспортера: / — ведущий барабан; 2—ведомый барабан; 3 — загрузочное устройство;
4 — опорные ролики; 5 — лента; 6 — разгрузочное устройство; 7—транспортируемый материал
Перемещаемый материал передается на транспортер через загрузочное устройство 3. Лента движется по опорным роликам 4. Скорость движения ленты принимается от 0,5 до 2 м/с в зависимости от степени измельчения материала.
Элеватор (рис. 11.3) предназначен для вертикального перемещения твердых материалов. Он имеет бесконечную ленту 2 (или цепь), На которой крепятся ковши 4. Ведущий барабан 3, расположенный вверху, приводит в движение ленту с ковшами. Все устройство заключено в кожух /, в нижней части которого устраивается воронка 6, через которую транспортируемый материал подается на элеватор.
Пожарная опасность транспортера и элеваторов обусловлена большим количеством горючего материала, интенсивным пылеобразованием, возможностью появления источников зажигания и быстрого распространения огня по материалу и транспортным коммуникациям.
Количество транспортируемого горючего вещества, величину горючей загрузки и опасность завала в случае нарушения нормальной "работы транспортера (или элеватора) можно оценить исходя из производительности транспортера:
G0 = Fwρ, (11.7)
где Go — производительность транспортера;
F — площадь сечения материала на ленте;
w —■ скорость движения ленты; ρ — расчетный вес транспортируемого материала. Если сечение материала на ленте принять полуэллиптическим, то
Рис. 11.3. Схема элеватора: / — кожух; 2 — цепь или лента; 3, 5 — барабаны или цепные блоки; 4 — ковши;
6 — воронка
F = 2/3bh, (11.8)
.Где b — ширина слоя насыпного материала на ленте; h — максимальная высота слоя материала на ленте. Обычно ширину слоя принимают равной 90% ширины ленты, то
есть
b=0,9B, (11.9)
высота слоя h для полуэллипса равна:
. (11.10)
С учетом (11.9) и (11.10)
. (11.11)
Часовая производительность транспортера
G=l62B2wρ. (11.12)
Количество горючего вещества, одновременно находящегося на ленте длиной L, равно:
GL=FLρ, (11.13)
а величина горючей загрузки q на 1 м2 ленты составляет:
. (11.14)
Скопление горючего вещества в месте пересыпки при завале за время т равно:
Gτ = Gτ. (11.15)
Для уменьшения запыленности воздуха при транспортировке сыпучих материалов предусматривается использование закрытых транспортеров (элеваторов) с отсосом запыленного воздуха из укрытий и увлажнением материалов (если это допустимо).
Источником зажигания при использовании транспортеров может быть теплота трения, фрикционные искры и разряды статического электричества, самовозгорание транспортируемых материалов и отложений пыли.
Из опыта известно, что основной причиной пожаров на ленточных транспортерах является нагрев ленты вследствие трения о ведущий барабан. Особенно интенсивно повышается температура при заклинивании ленты. Температуру нагрева ленты и барабана при буксовании можно оценить из условия равенства между количеством тепла, выделяющегося от трения, и количеством тепла, отдаваемого нагретыми элементами в окружающую среду, по формуле, аналогичной формуле (5.13):
, (11.16)
где Тн — максимальная температура нагрева ленты и барабана; Тв — температура окружающего воздуха; f — коэффициент трения; N — сила натяжения ленты; d6 — диаметр барабана; п — число оборотов барабана; α—коэффициент теплоотдачи от поверхности ленты и барабана в окружающую среду; F — поверхность теплоотдачи (поверхность ленты на участке контакта с барабаном и поверхность барабана, свободная от ленты).
Меры пожарной профилактики предусматривают:
предотвращение заклинивания ленты (недопустимы перегрузки, перекосы, завалы);
автоблокировку электродвигателей последовательно работающих транспортеров, которая обеспечивает аварийную остановку в случае перегрузки и других опасных ситуаций;
устройство систем, следящих за температурой барабана, останавливающих конвейер при аварийных ситуациях;
использование внутреннего (подача воды внутрь) и внешнего (подача распыленной воды) охлаждения барабана.
Предотвращение возникновения искр удара достигается путем регулирования зазоров между конструктивными элементами элеватора, натяжения цепи, путем контроля за состоянием подвески: ковшей и кожуха.
Самовозгорание материала (пыли) исключается при правильном выборе размера кожуха и регулярной очистке конструкций от пыли.
Повышенная опасность быстрого распространения возникшего пожара при перемещении твердых горючих материалов по транспортеру обусловлена значительной протяженностью коммуникаций, переходом их из помещения в помещение, наличием тяги в галереях или шахтах. Поэтому предусматриваются противопожарные стены с устройствами для перекрывания и защиты технологических проемов (заслонки ручные или автоматические), а также водяные или пенные дренчерные завесы с ручным или автоматическим включением.
Пневматический транспорт — транспортировка измельченных твердых материалов в потоке газа по трубам — это один из перспективных процессов транспорта, широко применяющихся в современной технологии. На рис. 11.4 и 11.5 представлены схемы пневмотранспорта под разрежением и под давлением.
Рис. 11.4. Схема пневматического транспорта под разрежением: 1— приемное устройство;
2— всасывающий трубопровод; 3— циклон; 4, 6 — трубопроводы; 5 — пылеулавливатель;
7 — вентилятор (вакуум-насос); 8— выброс воздуха; 9 — шлюзовый затвор
Рис. 11.5. Схема пневматического транспорта под давлением: / — вентилятор (компрессор); 2— рессивер воздуха; 3—бункер с материалом; 4 — нагнетательный воздуховод; 5 — циклон; 6 — пылеулавливатель; 7—выброс воздуха; 8 — шлюзовый затвор
Движение рабочего газа обеспечивается вентилятором, вакуум-насосом или компресссором. Скорость газа должна быть выше скорости осаждения частиц, так как частицы материала должны перейти во взвешенное состояние и унестись потоком газа. Скорость газа в системах пневмотранспорта от 8 до 35 м/с; концентрация материала в смеси с воздухом от 10 до 25 кг/кг.
Скорость газа в пневмотрубах устанавливают в зависимости от концентрации материала в смеси с воздухом μ, которую определяют по формуле
По величине μ, выбирают скорость газа w, пользуясь данными табл. 11.2
Таблица 11.2
Концентрация | μ≤1 | 2—10 | 10—15 | μ>15 |
W/Wo.oc | (1,25...1,5) | (1,5...2,0) | (2.0...2.5) | (2Д..3.0) |
Высокая пожарная опасность пневмотранспорта обусловлена тем, что горючие вещества в измельченном и взвешенном состоянии находятся в атмосфере воздуха. Горючая среда образуется, если рабочая концентрация материала в воздухе находится в пределах воспламенения:
φн<φр<φв, (11.18)
где φр — рабочая концентрация материала в воздухе, кг/м3.
Разделим все члены неравенства (11.18) на величину рв (плотность воздуха) и получим условие пожарной опасности систем пневмотранспорта:
φн≤μ<φв. (11.19)
В реальных системах пневмотранспорта верхний концентрационный предел воспламенения пылей высок и практически недостижим, а транспортировка при концентрациях, меньших нижнего предела воспламенения, неэкономична. Образование горючей среды внутри пневмотранспортной системы может быть исключено путем применения инертного газа. Чаще всего используют азот или его смесь с воздухом, в которой концентрация кислорода снижена до безопасной. Для экономии инертного газа рекомендуется применять систему рециркуляции.
При работе под избыточным давлением пыль из пневмотранспортной системы через неплотности может выходить в производственные помещения. Поэтому вакуумные системы пневмотранспорта являются более предпочтительными по сравнению с системами, работающими под давлением.
К специфическим источникам зажигания в системах пневмотранспорта относятся разряды статического электричества (особенно при транспортировке по трубам из неметаллических материалов), механические "искры удара лопастей вентилятора о корпус, самовозгорание отложений пыли. В качестве мер пожарной профилактики предусматривается заземление электропроводящих элементов оборудования, исключение образования искр удара и самовозгорания отложений пыли.
Пневмотранспортные системы весьма опасны в отношении распространения и развития пожара, так как по горючим смесям взвешенной пыли пламя распространяется особенно быстро. Отложения пыли на стенках воздуховодов также способствуют развитию пожара. Поэтому с целью ограничения распространения пожара устраивают на коммуникациях специальные пожарные заслонки с ручным или автоматическим приводом, а также устанавливают разрывные мембраны для сброса давления в случае взрыва. Циклоны рекомендуется размещать снаружи здания, в местах, где возможный взрыв не. может причинить ущерба.
Для разработки мероприятий по защите систем пневмотранспорта конкретных горючих веществ следует знать скорость распространения пламени, длительность выгорания отложений, температурные показатели, а также другие данные, которые получают путем специальных исследований. Результаты этих исследований используются при проектировании автоматической защиты пневмо-транспортных коммуникаций от распространения пламени.
- Пожарная безопасность
- § 1.1. Аппараты с неподвижным уровнем жидкости
- § 1.2. Аппараты с подвижным уровнем жидкости
- § 1.3. Аппараты с газом
- § 1.4. Аппараты с пылями, порошками и волокнами
- Глава 2. Выход горючих веществ наружу из нормально действующих аппаратов
- § 2.1. Аппараты с открытой поверхностью испарения
- § 2.2. Аппараты с дыхательными устройствами
- § 2.3. Аппараты периодического действия
- § 2.4. Выход пыли в помещение
- Глава 3. Выход горючих веществ наружу из поврежденного технологического оборудования
- § 3.1. Характеристика аварийной ситуации
- § 3.2. Локальное и полное повреждение аппаратов
- § 3.3. Ограничение утечек горючих веществ
- § 3.4. Образование взрывоопасной смеси в помещении и на открытой площадке
- Глава 4. Причины повреждения технологического оборудования
- § 4.1. Основы прочности и классификация причин повреждения оборудования
- § 4.2. Повреждения технологического оборудования в результате механических воздействий
- § 4.3. Повреждения технологического оборудования в результате температурного воздействия
- § 4.4. Повреждения технологического оборудования в результате химического воздействия
- Защита от коррозии
- Глава 5. Производственные источники зажигания
- § 5.1. Понятие источника зажигания
- § 5.2. Открытый огонь, раскаленные продукты горения и нагретые ими поверхности — производственные источники зажигания
- § 5.3. Тепловое проявление механической энергии как производственный источник зажигания
- § 5.4. Тепловое проявление химических реакций — производственный источник зажигания
- § 5.5. Тепловое проявление электрической энергии — производственный источник зажигания
- Глава 6. Подготовка оборудования к ремонтным огневым работам
- § 6.1. Использование естественной вентиляции оборудования перед проведением ремонтных огневых работ
- § 6.2. Использование принудительной вентиляции оборудования перед проведением ремонтных огневых работ
- § 6.3. Пропаривание аппаратов перед проведением ремонтных огневых работ
- § 6.4. Промывка аппаратов водой и моющими растворами перед проведением ремонтных огневых работ
- § 6.5. Флегматизация среды в аппаратах инертными газами — способ подготовки их к проведению ремонтных огневых работ
- § 6.6. Заполнение аппаратов пеной при проведении ремонтных огневых работ
- § 6.7. Организация ремонтных огневых работ
- Раздел второй. Предотвращение распространения пожара
- Глава 7. Ограничение количества горючих веществ и материалов, обращающихся в технологическом процессе
- § 7.1. Выбор технологической схемы производства
- § 7.2. Режим эксплуатации технологического процесса производства
- Производства,их удаление
- § 7.4. Замена горючих веществ, обращающихся в производстве, негорючими
- § 7.5. Аварийный слив жидкостей
- § 7.6. Аварийный выпуск горючих паров и газов
- Глава 8. Огнезадерживающие устройства на производственных коммуникациях
- § 8.1. Сухие огнепреградители
- Расчет огнепреградителя по методу я. Б. Зельдовича
- § 8.2. Жидкостные огнепреградители (гидрозатворы)
- § 8.3. Затворы из твердых измельченных материалов
- § 8.4. Автоматические заслонки и задвижки
- § 8.5. Защита трубопроводов от горючих отложений
- § 8.6. Изоляция производственных помещений от траншей и лотков с трубопроводами
- Глава 9. Защита технологического оборудования и людей от воздействия опасных факторов пожара
- § 9.1. Опасные факторы пожара
- § 9.2. Защита людей и технологического оборудования от теплового воздействия пожара
- § 9.3. Защита технологического оборудования от разрушений при взрыве
- § 9.4. Защита людей и технологического оборудования от агрессивных сред
- Пожарная профилактика основных
- § 10.2. Пожарная профилактика процессов измельчения твердых веществ
- § 10.3. Пожарная профилактика процессов механической обработки древесины и пластмасс
- § 10.4. Замена л вж и гж пожаробезопасными моющими средствами в технологических процессах обезжиривания и очистки поверхностей
- Глава 11. Пожарная профилактика средств транспортировки и хранения веществ и материалов
- § 11.1. Пожарная профилактика средств перемещения горючих жидкостей
- § 11.2. Пожарная профилактика средств перемещения и сжатия газов
- § 11.3. Пожарная профилактика средств перемещения твердых веществ
- § 11.4. Пожарная профилактика технологических трубопроводов
- § 11.5. Пожарная профилактика хранения горючих веществ
- Глава 12. Пожарная профилактика процессов нагревания и охлаждения веществ и материалов
- § 12.1. Пожарная профилактика процесса нагревания водяным паром
- § 12.2. Пожарная профилактика процесса нагревания горючих веществ пламенем и топочными газами
- § 12.3. Пожарная профилактика теплопроизводящих установок, используемых в сельском хозяйстве
- § 12.4. Пожарная профилактика процесса нагревания высокотемпературными теплоносителями
- Глава 13. Пожарная профилактика процесса ректификации
- § 13.1. Понятие процесса ректификации
- § 13.2 Ректификационные колонны: их устройство и работа
- § 13.3. Принципиальная схема непрерывно действующей ректификационной установки
- § 13.4. Особенности пожарной опасности процесса ректификации
- § 13.5. Пожарная профилактика процесса ректификации
- Пожаротушение и аварийное охлаждение ректификационной установки
- Глава 14. Пожарная профилактика процессов сорбции и рекуперации
- § 14.1. Пожарная опасность процесса абсорбции
- § 14.2. Пожарная профилактика процессов адсорбции и рекуперации
- Возможные пути распространения пожара
- Глава 15. Пожарная профилактика процессов окраски и сушки веществ и материалов
- § 15.1. Пожарная опасность и профилактика процесса окраски
- Окраска окунанием и обливанием
- Окраска в электрическом поле высокого напряжения
- § 15.2. Пожарная опасность и профилактика процессов сушки
- Глава 16. Пожарная профилактика процессов, протекающих в химических реакторах
- § 16.1. Назначение и классификация химических реакторов
- § 5. По конструктивному оформлению теплообменных устройств
- § 16.2. Пожарная опасность и противопожарная защита химических реакторов
- Глава 17. Пожарная профилактика экзотермических и эндотермических химических процессов
- § 17.1. Пожарная профилактика экзотермических процессов
- Процессы полимеризации и поликонденсации
- § 17.2. Пожарная профилактика эндотермических процессов
- Дегидрирование
- Пиролиз углеводородов
- Глава 18. Изучение технологических процессов
- §18.1. Информация о технологии производств, необходимая работнику пожарной охраны
- § 18.2. Источники информации о технологических процессах производств
- § 18.3. Методы изучения технологии производств
- Глава 19. Исследование и оценка пожаровзрывоопасности технологических процессов производств
- § 19.1. Категории пожаровзрывоопасности производств согласно требованиям сНиПов
- § 19.2. Соответствие технологии производств системе стандартов безопасности труда
- § 19.3. Разработка пожарно-технической карты
- Глава 20. Пожарно-техническая экспертиза технологических процессов на стадии проектирования производств
- § 20.1. Особенности пожарного надзора на стадии проектирования технологических процессов производств
- § 20.2. Использование норм проектирования по обеспечению пожарной безопасности технологических процессов производств
- § 20.3. Задачи и методика пожарно-технической экспертизы проектных материалов
- § 20.4. Основные решения пожарной безопасности, разрабатываемые на стадии проектирования производств
- Глава 21. Пожарно-техническое обследование технологических процессов действующих производств
- § 21.1. Задачи и организация пожарно-технического обследования
- § 21.2. Бригадный метод пожарно-технического обследования
- § 21.3. Комплексное пожарно-техническое обследование предприятий отрасли
- §21.4. Нормативно-технические документы пожарно-технического обследования
- § 21.5. Пожарно-техническая анкета как методический документ обследования
- § 21.6. Взаимодействие госпожнадзора с другими надзорными органами
- Глава 22. Обучение рабочих и инженерно-технических работников основам пожарной безопасности технологических процессов производств
- § 22.1. Организация и формы обучения
- § 22.2. Учебные программы
- § 22.3. Методика и технические средства обучения
- § 22.4. Программированное обучение
- Литература
- Оглавление