2.. Определение числа нпс и их расстановка по трассе
Необходимое для обеспечения заданной пропускной способности нефтепровода число НПС определяется из уравнения балансов между полными потерями напора в трубопроводе и напором развиваемым насосами НПС. Для эксплуатационного участка оно может быть записано следующим образом
, (4.18)
где hн – начальный напор в участке (напор развиваемый подпорными насосами); n0 – теоретическое число НПС; Hст= kHn-hст – напор развиваемый НПС; k – количество рабочих магистральных насосов на, НПС; Hn – напор развиваемый одним насосом; hст=1520м – внутристанционные потери напора; hк=2040м – остаточный напор в конце участка.
Из (4.18) теоретическое число НПС будет равно
. (4.19)
Практически всегда n0 будет получаться в виде неправильной дроби и возникает необходимость округления числа НПС.
При округлении в большую сторону суммарный напор всех НПС будет превышать необходимый для обеспечения заданной пропускной способности.
Если повышение пропускной способности не желательно, напор развиваемый всеми НПС необходимо снизить на величину
. (4.23)
Это возможно выполнить заменой рабочих колес на части насосов или обточкой рабочих колес. Во избежание снижения к.п.д. насосов обточка не должна превышать 10%. Если суммарный напор НПС не снизить, то величина H будет потеряна на дросселирование.
При округлении в меньшую сторону (n n0) пропускная способность нефтепровода снизится. Для повышения ее до заданного уровня используют прокладку лупинга для снижения потерь напора в трубопроводе на величину
, (4.24) где i – гидравлический уклон нефтепровода, представляющий собой потерю напора на трение на единице длины нефтепровода. ; (4.25) iл – гидравлический уклон лупингованного участка. . (4.26)
При одинаковых диаметрах лупинга и магистрали
, (4.27) = 0,296 – для зоны Блазиуса, = 0,272 – для зоны смешанного трения.
Принятые НПС надо расставить по трассе МН таким образом, чтобы давление за НПС не превышало допустимого по прочности трубопровода или насоса, а на входе в НПС не было меньше допустимого гарантирующего бескавитационный режим работы насосов.
, (4.28) , (4.29)
где h – напор на входе в НПС; P – допустимое давление труб МН; h – допустимый кавитационный запас насоса; Ps – давление насыщения нефти, Па; Pa – атмосферное давление, Па; hвст – потери напора в трубопроводах от магистрали до входа в первый работающий насос
м. (4.30)
Для горизонтального нефтепровода давление в любой точке участка может быть определено следующим образом
,
где P0 – давление в любой точке гидравлического участка нефтепровода, Па; P1 – давление на выходе НПС, Па; x – расстояние от начала участка, м
(4.33) (4.34)
Таким образом в горизонтальном газопроводе давление снижается равномерно по длине участка.
Линия показывающая изменение давление по длине нефтепровода получила название линии гидравлических уклонов. Из (4.31) видим, что гидравлический уклон геометрически является тангенсом угла наклона линии гидравлических уклонов по отношению к горизонтальной линии трубопровода.
Для реального трубопровода изменение давления по длине участка будет зависеть от z
, (4.32)
где P – давление в любой точке участка реального МН, Па; – разность геодезических отметок участка, м.
Разность геодезических отметок может значительно повлиять на распределение давления по длине участка. Для облегчения задачи определения положения НПС используется графический метод их расстановки. Для этого на сжатом профиле трассы, начиная с головной НПС, по вертикали от отметки трассы откладывают, с учетом вертикального масштаба, напор на выходе НПС. Из полученной точки строят линию гидравлических уклонов. Расстояние между профилем трассы и линией гидравлических уклонов дает напор в любой точке участка. Выбрав точку трассы, где напор равняется желаемому напору на входе в НПС, принимают ее за место возможной установки очередной НПС. Далее анализируют возможность и целесообразность сооружения НПС в выбранном месте. Место строительства может быть сдвинуто влево до максимального значения давления на входе НПС. Из (4.28)
. (4.33)
Вправо НПС может быть сдвинута до выполнения условия
. (4.34)
Если желаемое место строительства НПС выходит за пределы этих границ, то это может быть реализовано используя прокладку лупинга и изменение диаметра рабочих колес насосов.
- Экзаменационный билет № 1
- 1 Порядок обозначения трассы мнгп на местности, на переходах через реки и озера, автомобильные и железные дороги
- 2.Технологическая схема мн
- 4.Понятие о жидкости (газе), как сплошной среды. Теплофизические свойства капельных, газообразных сред.
- Экзаменационный билет № 2
- Периодичность очистки
- 2: Декларация о намерениях, обоснование инвестиций.
- 3: Генеральный план нпс.
- 4: Понятие о многокомпонентных и многофазных средах. Определение однородной и неоднородной, изотропной и анизотропной сплошной среды.
- Экзаменационный билет №3
- 1.Минимально и максимально-допустимые значения защитных потенциалов на подземных стальных коммуникациях объектов трубопроводного транспорта нефти и газа. Опасность явлений недозащиты и перезащиты.
- 2 Стадийность проектирования.
- 3.Технологическая схема нпс
- 4 Простейшие модели жидких и газообразных сплошных сред: идеальная, вязкая ,несжимаемая ,сжимаемая , ньютоновская , упругая, с тепловым расширением, совершенного и реального газов.
- Экзаменационный билет № 4
- 1. Схема возникновения блуждающих токов на магистральных нефтегазопроводах.
- 2. Гидравлический расчет нефтепровода
- 3.Общецеховая маслосистема компрессорной станции
- Экзаменационный билет №5
- 1. Характеристика стальных труб: ударная вязкость kcu, kcv, эквивалент углерода, процент волокна в изломе образцов двтт, временное сопротивление, предел текучести
- 2.. Определение числа нпс и их расстановка по трассе
- 3 Системы перекачки нефти и нефтепродуктов
- 4. Виды движения сплошных сред: неустановившееся, пространственное, плоское, одномерное.
- Экзаменационный билет №6
- Оценить свариваемость трубных сталей 17г2сф, 09г2сф
- Системы календарного планирования и контроля реализации проектов.
- Установки подготовки топливного и пускового газа.
- Характеристики смеси: плотность, скорость (барицентрическая, среднемассовая, диффузионная
- Экзаменационный билет №7
- 1Критерии очистки полости нгп от парафина, грунта, металла
- 2 Диаграммы применяемые для управления проектами.
- Сеть предшествования
- 4 Понятие о массовых и поверхностных, внутренних и внешних силах. Тензор напряжений и его свойства.
- Экзаменационный билет №8
- 1.Определение (предельного) допустимого давления в трубе с опасным дефектом геометрии. Расчет коэффициента снижения рабочего давления.
- 3.Системы охлаждения технологического газа на компрессорных станциях.
- 4.Обобщенный закон Ньютона. Уравнения движения вязкой жидкости Навье - Стокса. Обобщенный закон Ньютона
- Экзаменационный билет № 9
- 2.Процесс контроля исполнения и управления проектом.
- 3.Конструкция и компоновка насосного цеха.
- 4. Модель идеальной жидкости. Уравнения движения Эйлера.
- 1.Ремонтные конструкции для нгп постоянного и временного ремонта
- 3.Системы очистки технологического газа
- 4.Уравнение Бернулли для идеальной и вязкой жидкости. Геометрическая и энергетическая интерпретация слагаемых уравнения Бернулли.
- 1.Порядок производства вскрышных работ на действующих нгп
- 2. Парафинизация нефтепровода
- 4.Термодинамические силы и потоки. Законы молекулярного переноса тепла и массы в исследовании процессов тепломассообмена в сплошных средах.
- 1 Порядок врезки вантузов на действующем нп. Применяемое оборудование
- 2. Система смазки и охлаждения подшипников насосных агрегатов.
- Определение оптимальной периодичности очистки
- Понятие о формуле размерности, критериях и числах подобия
- Гидравлические испытания линейной части действующих нефтепроводов
- Технологическая схема газотурбинного компрессорного цеха с неполнонапорными центробежными нагнетателями
- Нормативно-техническая и законодательная база систем проектирования и организации строительства объектов
- Понятие о массовых и поверхностных, внутренних и внешних силах. Тензор напряжения и его свойства.
- Порядок вырезки дефектного участка с помощью труборезов типа мрт. Преимущества и недостатки труборезов мрт перед вырезкой с помощью кумулятивных зарядов.
- Технологическая схема газотурбинного компрессорного цеха с полнонапорными центробежными нагнетателями.
- Особенности последовательной перекачки нефтей и нефтепродуктов.
- Закономерности гидродинамики и теплообмена при ламинарном течении вязкого потока в трубах. Понятие о пограничном слое.
- . № Экзаменационный билет № 15
- Порядок вырезки дефектного участка с помощью кумулятивных зарядов. Преимущества и недостатки вырезки дефектных участков с помощью кумулятивных зарядов по сравнению с труборезами.
- 2. Средства контроля и защиты насосного агрегата
- 3. Механизм образования парафиновых отложений
- 4. Точные решения уравнений движения вязкой жидкости. Законы гидравлического сопротивления трения.
- Экзаменационный билет № 16
- 1. Многоразовый герметизатор «Кайман». Преимущества перед пзу, глиняными тампонами
- 2. Компоновка компрессорных цехов
- Коэффициент гидравлической эффективности участка мн
- 4. Технологический расчёт трубопровода. Базисные формулы трения, гидравлический уклон, влияние геометрии на режим течения. Потери на трение, местные сопротивления.
- Экзаменационный билет № 17
- 1.Конструкции и порядок работы механических и мембранных дыхательных клапанов рвс
- 2. Средства измерения количества нефти на нпс, конструктивные особенности и области применения
- 3. Особенности перекачки высоковязких и высокозастывших нефтей.
- 4.Понятие о турбулентном течении. Подход Рейнольдса к описанию сложного сдвигового течения, его динамические уравнения.
- Экзаменационный билет № 18
- Генеральные планы компрессорных станций
- 4. Виды потерь напора: потери по длине и потери в местных сопротивлениях.
- Экзаменационный билет № 19
- Изоляция сварных кольцевых стыков труб с заводской изоляцией в полевых условиях с помощью термоусаживающихся манжет.
- 3. Основные этапы подготовки нефти и газа до товарных качеств.
- Экзаменационный билет № 20
- 1. Схема компенсации намагниченности мнгп с помощью источников постоянного тока, с помощью постоянных магнитов
- 2. Компрессорные станции с центробежными газотурбинными гпа.
- 3. Эквивалентным диаметром
- 4. Виды движения сплошных сред: неустановившееся, пространственное, плоское, одномерное.
- Экзаменационный билет № 21
- 2 Система сглаживания волн давления.
- 3. Совместная работа насосных станций и линейной части
- 4. Характеристики смеси: плотность, скорость (барицентрическая, среднемассовая, диффузионная).
- Экзаменационный билет № 22
- Конструкция и работа предохранительного гидравлического клапана (кпг).
- 3.Изменение основных технологических параметров перекачки при снижении эффективности работы линейной части.
- 4.Понятие о жидкости (газе), как сплошной среды. Теплофизические свойства капельных, газообразных сред.
- 86. Виды движения сплошных сред: неустановившееся, пространственное, плоское, одномерное.
- 87. Модель вязкой ньютоновской и неньютоновской жидкости
- 89. Установки подготовки топливного и пускового газа.
- 90. Ремонтные конструкции для нгп постоянного и временного ремонта
- 91. Коэффициент гидравлической эффективности участка мн
- 92. Особенности перекачки высоковязких и высокозастывших нефтей.
- 93. Системы очистки технологического газа
- 94. Технологическая схема нпс
- 95. Компрессорные станции с центробежными газотурбинными гпа.