2. Средства измерения количества нефти на нпс, конструктивные особенности и области применения
Расход нефти и нефтепродуктов может быть определен в единицах объема и (или) единицах массы.
По принципу действия различают объемные, турбинные, электромагнитные, ультразвуковые, вихревые счетчики. Известны другие конструкции, находящиеся в стадии разработки, среди которых можно выделить: тепловые, ионизационные, ядерномагнитные и т. д. Широкое распространение в практике трубопроводного транспорта при малых производительностях имеют объемные счетчики, в которых поток разделяется на порции механическим способом. Разделение на порции происходит при помощи эксцентрично укрепленных вращающихся лопастей или шестерен, движимых ротором. В процессе движения в определенные моменты образуются измерительные камеры, размер которых вымерен с высокой степенью точности. Количество порций в единицу времени, пропущенных через камеры, определяется частотой вращения ротора. Измерительный элемент объемных счетчиков с овальными шестернями состоит из двух прецизионных шестерен. Под действием давления жидкости шестерни вращаются. При каждом обороте пары овальных шестерен протекает точно специфицированный объем жидкости через счетчик.
Данный тип счетчиков определяет количество жидкости путем прямого измерения объема потока. Другие конструкции счетчиков обеспечивают измерение объема косвенными методами. Они могут измерять такие динамические параметры, как скорость потока, скорость звука в потоке, динамический напор, частоту возникновения вихрей, и на основании физических закономерностей преобразуют измеренные параметры в расход и количество.
Наибольшее распространение для измерения количества нефти имеют турбинные счетчики. В них для определения количества жидкости используют помещенное в поток вращающееся тело (турбинка, зубчатая шестерня и т. д.). Вращение турбинки происходит за счет передачи энергии потока на лопасти. Частота вращения непосредственно зависит от скорости потока, что и позволяет определить расход в трубопроводе.
Для ориентировочного измерения расхода и количества жидкости можно использовать погружные счетчики. Эти счетчики измеряют скорость жидкости в одной определенной точке. При турбулентном режиме течения потока точка средней скорости расположена на окружности, радиус которой составляет 0,758 от радиуса трубы.
Погружной счетчик следует устанавливать в точке средней скорости. При установке в другом месте можно использовать соотношение
Q = kυ υм F, (2.28) где Q — расход; kυ — коэффициент отношения средней скорости к местной скорости; υм — скорость в месте установки; F — внутренняя площадь поперечного сечения трубы.
Величина kυ остается постоянной во всем диапазоне скоростей турбулентного режима. Принцип действия погружных счетчиков аналогичен турбинным. Естественно, что погрешность измерения несколько увеличивается. Преимуществами погружных счетчиков являются низкая стоимость, а также малое сопротивление, создаваемое в потоке. Конструкция погружных счетчиков позволяет устанавливать и демонтировать их без остановки трубопровода и снижения давления в нем. По сравнению с объемными турбинные счетчики имеют меньшие габаритные размеры и массу, более долговечны в эксплуатации, имеют большую пропускную способность. Однако наличие вращающегося тела, помещенного в поток, приводит к износу опор, а также к большим гидравлическим потерям.
В вихревых счетчиках используется эффект возникновения вихревых колебаний в движущемся потоке. В поток помещают установленное в корпусе датчика неподвижное тело плохообтекаемой формы (пластина, цилиндр). За этим телом происходит периодический срыв вихрей. Частота генерирования вихря при однородных потоках пропорциональна только скорости потока. Линейный эффект существует в потоках, в которых число Рейнольдса превышает 10000. В этом случае частота образования вихрей определяется формулой f = где χ — постоянная Струхаля; d — лобовая поверхность тела возмущения; υ — скорость потока.
Из-за ограничений по минимальному значению числа Рейнольдса вихревые счетчики не могут быть использованы при малых диаметрах трубопроводов, при применении на больших диаметрах возникают сложности в связи с очень низкой частотой срыва вихрей (меньше 1 Гц). Поэтому вихревые счетчики обычно изготавливают диаметром 50—150 мм.
Ультразвуковые методы основаны на изменении скорости распространения ультразвуковой волны в жидкости при наличии потока. При распространении волны по направлению потока скорость возрастает, а против потока — уменьшается. Счетчики, основанные на использовании ультразвуковых методов, разделяют на типы в зависимости от схемы измерения. Приборы, измеряяющие скорость распространения ультразвука только в одном направлении, называются одноканальными, а в двух направлениях — двухканальными. Время прохождения расстояния между излучателем и приемником по направлению потока τi и против потока τ2 определяется формулами τi = ; τ2 = , где L — длина пути между излучателями; с — скорость ультразвука в среде; υ— скорость потока.
Для повышения точности используют схему, по которой измеряют разность времен τ1 и τ2: τ1 - τ2 = (2.31)
При учете поправок на изменение скорости ультразвука в измеряемой среде ультразвуковые счетчики могут измерять с предельной погрешностью порядка 0,3 %.
Кроме рассмотренных четырех основных типов счетчиков, промышленное разви-тие получили электромагнитные счетчики. Эти счетчики измеряют электродвижущую силу, индуцируемую в потоке, пересекающем магнитное поле. Поскольку электродвижущая сила возникает в движущемся в магнитном поле проводнике, этот метод применим только для электропроводных жидкостей. Для нефтей и нефтепродуктов, обладающих очень слабой электропроводностью, электромагнитные счетчики непригодны.
- Экзаменационный билет № 1
- 1 Порядок обозначения трассы мнгп на местности, на переходах через реки и озера, автомобильные и железные дороги
- 2.Технологическая схема мн
- 4.Понятие о жидкости (газе), как сплошной среды. Теплофизические свойства капельных, газообразных сред.
- Экзаменационный билет № 2
- Периодичность очистки
- 2: Декларация о намерениях, обоснование инвестиций.
- 3: Генеральный план нпс.
- 4: Понятие о многокомпонентных и многофазных средах. Определение однородной и неоднородной, изотропной и анизотропной сплошной среды.
- Экзаменационный билет №3
- 1.Минимально и максимально-допустимые значения защитных потенциалов на подземных стальных коммуникациях объектов трубопроводного транспорта нефти и газа. Опасность явлений недозащиты и перезащиты.
- 2 Стадийность проектирования.
- 3.Технологическая схема нпс
- 4 Простейшие модели жидких и газообразных сплошных сред: идеальная, вязкая ,несжимаемая ,сжимаемая , ньютоновская , упругая, с тепловым расширением, совершенного и реального газов.
- Экзаменационный билет № 4
- 1. Схема возникновения блуждающих токов на магистральных нефтегазопроводах.
- 2. Гидравлический расчет нефтепровода
- 3.Общецеховая маслосистема компрессорной станции
- Экзаменационный билет №5
- 1. Характеристика стальных труб: ударная вязкость kcu, kcv, эквивалент углерода, процент волокна в изломе образцов двтт, временное сопротивление, предел текучести
- 2.. Определение числа нпс и их расстановка по трассе
- 3 Системы перекачки нефти и нефтепродуктов
- 4. Виды движения сплошных сред: неустановившееся, пространственное, плоское, одномерное.
- Экзаменационный билет №6
- Оценить свариваемость трубных сталей 17г2сф, 09г2сф
- Системы календарного планирования и контроля реализации проектов.
- Установки подготовки топливного и пускового газа.
- Характеристики смеси: плотность, скорость (барицентрическая, среднемассовая, диффузионная
- Экзаменационный билет №7
- 1Критерии очистки полости нгп от парафина, грунта, металла
- 2 Диаграммы применяемые для управления проектами.
- Сеть предшествования
- 4 Понятие о массовых и поверхностных, внутренних и внешних силах. Тензор напряжений и его свойства.
- Экзаменационный билет №8
- 1.Определение (предельного) допустимого давления в трубе с опасным дефектом геометрии. Расчет коэффициента снижения рабочего давления.
- 3.Системы охлаждения технологического газа на компрессорных станциях.
- 4.Обобщенный закон Ньютона. Уравнения движения вязкой жидкости Навье - Стокса. Обобщенный закон Ньютона
- Экзаменационный билет № 9
- 2.Процесс контроля исполнения и управления проектом.
- 3.Конструкция и компоновка насосного цеха.
- 4. Модель идеальной жидкости. Уравнения движения Эйлера.
- 1.Ремонтные конструкции для нгп постоянного и временного ремонта
- 3.Системы очистки технологического газа
- 4.Уравнение Бернулли для идеальной и вязкой жидкости. Геометрическая и энергетическая интерпретация слагаемых уравнения Бернулли.
- 1.Порядок производства вскрышных работ на действующих нгп
- 2. Парафинизация нефтепровода
- 4.Термодинамические силы и потоки. Законы молекулярного переноса тепла и массы в исследовании процессов тепломассообмена в сплошных средах.
- 1 Порядок врезки вантузов на действующем нп. Применяемое оборудование
- 2. Система смазки и охлаждения подшипников насосных агрегатов.
- Определение оптимальной периодичности очистки
- Понятие о формуле размерности, критериях и числах подобия
- Гидравлические испытания линейной части действующих нефтепроводов
- Технологическая схема газотурбинного компрессорного цеха с неполнонапорными центробежными нагнетателями
- Нормативно-техническая и законодательная база систем проектирования и организации строительства объектов
- Понятие о массовых и поверхностных, внутренних и внешних силах. Тензор напряжения и его свойства.
- Порядок вырезки дефектного участка с помощью труборезов типа мрт. Преимущества и недостатки труборезов мрт перед вырезкой с помощью кумулятивных зарядов.
- Технологическая схема газотурбинного компрессорного цеха с полнонапорными центробежными нагнетателями.
- Особенности последовательной перекачки нефтей и нефтепродуктов.
- Закономерности гидродинамики и теплообмена при ламинарном течении вязкого потока в трубах. Понятие о пограничном слое.
- . № Экзаменационный билет № 15
- Порядок вырезки дефектного участка с помощью кумулятивных зарядов. Преимущества и недостатки вырезки дефектных участков с помощью кумулятивных зарядов по сравнению с труборезами.
- 2. Средства контроля и защиты насосного агрегата
- 3. Механизм образования парафиновых отложений
- 4. Точные решения уравнений движения вязкой жидкости. Законы гидравлического сопротивления трения.
- Экзаменационный билет № 16
- 1. Многоразовый герметизатор «Кайман». Преимущества перед пзу, глиняными тампонами
- 2. Компоновка компрессорных цехов
- Коэффициент гидравлической эффективности участка мн
- 4. Технологический расчёт трубопровода. Базисные формулы трения, гидравлический уклон, влияние геометрии на режим течения. Потери на трение, местные сопротивления.
- Экзаменационный билет № 17
- 1.Конструкции и порядок работы механических и мембранных дыхательных клапанов рвс
- 2. Средства измерения количества нефти на нпс, конструктивные особенности и области применения
- 3. Особенности перекачки высоковязких и высокозастывших нефтей.
- 4.Понятие о турбулентном течении. Подход Рейнольдса к описанию сложного сдвигового течения, его динамические уравнения.
- Экзаменационный билет № 18
- Генеральные планы компрессорных станций
- 4. Виды потерь напора: потери по длине и потери в местных сопротивлениях.
- Экзаменационный билет № 19
- Изоляция сварных кольцевых стыков труб с заводской изоляцией в полевых условиях с помощью термоусаживающихся манжет.
- 3. Основные этапы подготовки нефти и газа до товарных качеств.
- Экзаменационный билет № 20
- 1. Схема компенсации намагниченности мнгп с помощью источников постоянного тока, с помощью постоянных магнитов
- 2. Компрессорные станции с центробежными газотурбинными гпа.
- 3. Эквивалентным диаметром
- 4. Виды движения сплошных сред: неустановившееся, пространственное, плоское, одномерное.
- Экзаменационный билет № 21
- 2 Система сглаживания волн давления.
- 3. Совместная работа насосных станций и линейной части
- 4. Характеристики смеси: плотность, скорость (барицентрическая, среднемассовая, диффузионная).
- Экзаменационный билет № 22
- Конструкция и работа предохранительного гидравлического клапана (кпг).
- 3.Изменение основных технологических параметров перекачки при снижении эффективности работы линейной части.
- 4.Понятие о жидкости (газе), как сплошной среды. Теплофизические свойства капельных, газообразных сред.
- 86. Виды движения сплошных сред: неустановившееся, пространственное, плоское, одномерное.
- 87. Модель вязкой ньютоновской и неньютоновской жидкости
- 89. Установки подготовки топливного и пускового газа.
- 90. Ремонтные конструкции для нгп постоянного и временного ремонта
- 91. Коэффициент гидравлической эффективности участка мн
- 92. Особенности перекачки высоковязких и высокозастывших нефтей.
- 93. Системы очистки технологического газа
- 94. Технологическая схема нпс
- 95. Компрессорные станции с центробежными газотурбинными гпа.