1.3. Критерии конструирования композита
Для успешного конструирования композиционного материала недостаточно учитывать лишь свойства отдельных компонентов, нужно создавать материал, обладающий такими свойствами, которые обеспечат надежную работу изделия в заданных условиях.
При конструировании композита особенно важно:
• определить требуемые свойства композита и наиболее подходящие материалы для их реализации;
• обратить внимание на физическую, химическую, механическую и т.д. совместимости компонентов даже в наиболее тяжелых условиях работы, например, они должны одинаково или пропорционально деформироваться;
• соблюдать определенную геометрию расположения компонентов композита (более прочная составляющая должна иметь вытянутую форму, например волокна, ленты, фольги, а менее прочная составляющая должна ее окружать);
• выбрать наиболее эффективную и экономичную технологию изготовления композита.
После определения конструкции композита - выбора компонентов и распределения их функций, приступают к решению наиболее сложной задачи - изготовлению композиционного материала, включающему выбор геометрии армирования (например, различного рода плетения) и наиболее эффективного технологического метода соединения компонентов композита друг с другом (например, золь-гель методы, методы порошковой металлургии, методы осаждения-напыления и другие). Однако основная сложность заключается не в сборке отдельных компонентов композита, а в образовании между ними прочного и специфического соединения. При этом большую роль играет предварительный анализ граничных процессов, происходящих в системе. Межфазное взаимодействие оказывает влияние на прочность связи компонентов, возможность химических реакций на границе и образование новых фаз, формируя такие характеристики композита, как термостойкость, устойчивость к действию агрессивных сред, прочность и другие важные эксплуатационные характеристики нового материала. Осуществление контроля не только за составом, но и за структурой требует развития теории, которая позволила бы предсказать, как будет влиять то или иное изменение на свойства композита. Когда стало расти число возможных комбинаций матрицы и армирующих волокон, а простое слоистое армирование начало уступать место армированию сложными переплетениями, исследователи стали искать пути, позволяющие избежать чисто эмпирического подхода. Задача состоит в том, чтобы по характеристикам волокна (частиц и др.), матрицы и по их компоновке заранее предсказать поведение композита.
В настоящее время в мировой практике при массовом производстве композитов целевого назначения проводят предварительный системный количественный анализ. Обычно к решению проблем, связанных с производством новых материалов, применяют два метода такого анализа.
Многофакторный анализ полезности дает возможность определить "ценность" свойств того или иного материала в конкретном применении.
Метод моделирования процесс - стоимость основан на моделировании стоимости производства той или иной детали при ее изготовлении из различных материалов разными технологическими способами. Модели позволяют определить стоимостные последствия нескольких предполагаемых вариантов и проанализировать "чувствительность" стоимости к изменениям таких переменных, как выход годных изделий и объем производства, например, «конкуренция» между альтернативными формовочными процессами наиболее высока в производстве авиационных двигателей. Стоимость изделия оказывается менее важной,
чем проблема выбора такого процесса, который обеспечил бы наиболее близкое соответствие изделия техническим условиям. Температура реактивного двигателя является ключевым фактором, определяющим его КПД. Первоначально турбинные лопатки изготовляли ковкой, сейчас их часто отливают способом направленной кристаллизации. Получающаяся структура обеспечивает больший срок службы. Методами порошковой металлургии и быстрого отвердения можно получать чрезвычайно однородные структуры с улучшенными свойствами. Например, турбинные лопатки, изготовленные по этой технологии (80-90-е годы), позволили значительно повысить рабочие температуры авиационных двигателей.
Применение новых композиционных материалов является важным фактором в решении таких фундаментальных экономических проблем, как ограниченность природных ресурсов, недостаток стратегических материалов, поддержание темпов экономического развития и роста производительности труда, сохранение конкурентоспособности на мировом рынке. Первая из этих проблем может быть проиллюстрирована на примере меди. Спрос на этот металл продолжает оставаться стабильным, о чем свидетельствует тот факт, что даже очень бедные медью рудные месторождения все еще эксплуатируются. Однако, как электропроводящий металл медь вытесняется, например, композитами на основе алюминия и полимеров. В промышленности средств связи медь считается устаревшим материалом и ей на смену приходят оптические волокна.
- Предисловие
- Введение
- Глава 1. Классификация и критерии конструирования композиционных материалов
- 1.1. Что такое композит?
- 1.2. Классификация композиционных материалов
- 1.3. Критерии конструирования композита
- 1.4. Свойства некоторых современных композиционных материалов
- Глава 2. Периодическая таблица Менделеева. Электронное строение элементов, типы связей и свойства веществ
- 2.1. Периодический закон д.И. Менделеева и свойства элементов
- 2.2. Электронная структура и типы связей элементов и соединений
- Глава 3. Фазовые переходы и их влияние на структуру и свойства материалов
- 3.1. Основные виды фазовых диаграмм двухкомпонентных систем
- 3.2. Фазовые превращения металлических структур
- 3.2.1. Полиморфные превращения
- 3.2.2. Условия образования и виды твердых растворов
- 3.3. Влияние на фазовые переходы внешних полей и размеров компонентов композита
- Глава 4. Физико-химические свойства основных компонентов композитов
- 4.1. Металлы
- 4.2. Полупроводники
- 4.3. Полимеры
- 4.4. Жидкие кристаллы
- 4.5. Стекла
- 4.6. Керамики
- 4.7. Основные группы композиционных материалов
- Глава 5. Термодинамика композиционных систем с границами раздела
- 5.1. Предмет термодинамики. Основные законы классической термодинамики и термодинамические функции состояния системы
- 5.2. Термодинамика систем с поверхностями раздела
- 5.2.1.Обобщенное уравнение термодинамики для систем с поверхностями раздела
- 5.2.2. Термодинамические функции для систем с межфазными границами раздела
- 5.2.3. Условие равновесия на фазовой границе с ненулевой кривизной. Формула Лапласа
- 5.2.4. Поверхностное натяжение и специальные границы
- 5.3. Пути развития термодинамики: от равновесной к неравновесной нелинейной
- Глава 6. Межфазное взаимодействие, совместимость компонентов, стабильность границы и прочность композита
- 6.1. Совместимость компонентов композита
- 6.1.1. Химическая совместимость компонентов
- 6.1.2. Основные термодинамические представления о совместимости материалов
- 6.1.3. Влияние легирующих добавок на стабильность волокнистого композита
- 6.2. Классификация композитов на основе межфазного взаимодействия
- 6.3. Типы связей и стабильность границы раздела композита
- 6.3.1. Типы связей на границе раздела между компонентами композита
- 6.3.2. Термическая и механическая стабильность поверхности раздела композита
- 6.3.3. Прочность границы и характер разрушения композита
- Глава 7. Физические свойства композитов. Упругие и прочностные свойства
- 7.1. Общее определение физических свойств композита. Х-y-эффект
- 7.2. Упругие свойства композиционных материалов
- 7.2.1. Упругие свойства композита, армированного непрерывными волокнами
- 7.2.2. Упругие свойства порошковых композитов
- 7.3. Прочность композиционных материалов
- 7.3.1. Прочность композита, армированного непрерывными волокнами
- Влияние ориентации волокон на разрушение композита.
- 7.3.2. Прочность при растяжении композита, армированного дискретными волокнами.
- 7.3.3. Вязкость разрушения композита
- Глава 8. Адгезия и смачивание в композитах
- 8.1. Основные определения
- 8.2. Формирование межфазного контакта. Уравнения Дюпре и Юнга
- 8.3. Адгезия композиционных материалов
- 8.3.1. Взаимодействие контактирующих поверхностей при адгезии и прочность соединений
- 8.3.2. Адгезионная прочность на поверхности раздела и механические свойства композитов
- 8.4. Смачивание композиционных материалов
- 8.4.1. Смачивание и его роль в технологии и природе
- 8.4.2. Основные условия смачивания в равновесных и неравновесных системах
- 8.4.3. Смачивание различных типов материалов
- Система жидкий металл - тугоплавкое соединение.
- 8.5. Процессы адгезии, смачивания и
- Глава 9. Краткая характеристика и общие методы получения и обработки композитов на основе металлической матрицы
- 9.1. Примеры композитов на основе металлической матрицы
- 9.2. Общая характеристика методов получения композитов с металлической матрицей
- 9.2.1. Классификация методов получения и обработки композитов с металлической матрицей
- 9.2.2. Жидкофазные методы
- 9.2.3. Методы осаждения - напыления
- 9.3. Технологические процессы получения и обработки металлических композиционных материалов
- 9.3.1. Обработка давлением
- 9.3.2. Процессы порошковой металлургии
- 9. 4. Методы получения дисперсно-упрочненных композитов
- 9.5. Методы получения псевдосплавов
- 9.6. Методы получения эвтектических композиционных материалов
- 9.7. Низкотемпературные методы изготовления композитов с металлической матрицей
- Глава 10. Основные виды композитов на основе металлической матрицы. Свойства, методы получения и области применения
- 10.1. Металлические волокнистые композиционные материалы
- 10.1.1. Свойства и методы получения мвкм на основе алюминия
- 10.1.2. Свойства и методы получения мвкм на основе магния
- 10.1.3. Свойства и методы получения мвкм на основе титана
- 10.1.4. Свойства и методы получения мвкм на основе никеля и кобальта
- 10.1.5. Области применения мвкм
- 10.2. Дисперсно-упрочненные композиционные материалы
- 10.2.1 Свойства и методы получения дкм на основе алюминия
- 10.2.2. Свойства и методы получения дкм на основе никеля
- 10.2.3. Свойства и методы получения дкм на основе хрома
- 10.2.4. Свойства и методы получения дкм на основе молибдена
- 10.2.5. Свойства и методы получения дкм на основе вольфрама
- 10.2. 6. Свойства и методы получения дкм на основе серебра
- 10.3. Псевдосплавы
- 10.3.1. Свойства и методы получения псевдосплавов на основе железа
- 10.3.2. Свойства и методы получения псевдосплавов на основе вольфрама и молибдена
- 10.3.3. Свойства и методы получения псевдосплавов на основе никеля
- 10.3.4. Свойства и методы получения псевдосплавов на основе титана
- 10.3.5. Области применения псевдосплавов
- 10.4. Эвтектические композиционные материалы
- Глава 11. Композиты на основе полимерной матрицы. Свойства, методы получения и области применения
- 11.1. Состав и основные свойства полимерных композитов
- 11.1.1. Армирующие волокна для пкм
- 11.1.2. Матрицы для пкм
- 11.1.3. Наногибридные полимер-неорганические композиты
- 11.1.4. Поверхность раздела фаз в пкм
- 11.2. Методы получения полимерных композитов
- 11.2.1. Метод изготовления слоистыл и намотанных пкм
- 11.2.2. Золь-гель-методы получения наногибридных полимер-неорганических композитов
- 11.4. Дендримеры - новый вид полимеров и композиты на их основе
- Глава 12. Жидкокристаллические композиты. Свойства, методы получения и области применения
- 12.1. Основные свойства жидких кристаллов
- 12.2. Методы получения жидкокристаллических композитов
- 12.3. Области применения жкк
- Глава 13. Керамические и углерод-углеродные композиционные материалы. Основные свойства, методы получения и области применения
- 13.1. Керамические композиционные материалы
- 13.1.1. Основные свойства ккм
- 6 Армирование волокнами; в - «затупление» трещины на большой площади
- 13.1.2. Методы получения и области применения ккм
- 13.2. Углерод - углеродные композиционные материалы
- 13.2.1. Основные свойства уукм
- 13.2.2. Методы получения и области применения уукм
- Глава 14. Синергетика процессов создания композитов. Новые виды материалов и технологий: нано- и биоковмпозиты
- Послесловие
- Задачи и упражнения
- Литература основная
- Литература дополнительная
- Содержание
- Глава 1 Классификация и критерии конструирования
- Глава 2. Периодическая таблица Менделеева. Электронная
- Глава 3. Фазовые переходы и их влияние на структуру
- Глава 4. Физико-химические свойства основных компонентов
- Глава 5. Термодинамика композиционных систем
- Глава 6. Межфазное взаимодействие, совместимость компонентов, Стабильность границы и прочность композита................................68
- Глава 7. Физические свойства композитов. Упругие
- Глава 8. Адгезия и смачивание в композитах.........................................90
- Глава 9. Краткая характеристики и общие методы получения и обработки композитов на основе металлической матрицы............................105
- Глава 10. Основные виды композитов на основе м еталличгеской матрицы. Свойства, методы получения и области применения........................ .......... .............114
- Глава 11. Композиты на основе полимерной матрицы. Свойства,
- Глава 12. Жидкокрис галлические композиты. Свойства,
- Глава 14. Синергетика процессов создания композитов.