11.1.1. Армирующие волокна для пкм
Армирующие волокна несут основную механическую нагрузку и именно они определяют прочность и жесткость (модуль упругости) материала.
Стеклянные волокна вытягивают из расплавленной, специально приготовленной смеси оксида кремния с оксидами разных металлов. Основные затраты - затраты энергии на расплавление и гомогенизацию смеси. Стеклопластики - наиболее дешевые композиты, однако их главные недостатки - сравнительно большая плотность и низкий модуль упругости.
Для преодоления этих недостатков применяют углеродные волокна. В качестве сырья для получения углеродных волокон используют полимерные полиакрилонитрильные или вискозные волокна. Специальная многостадийная термическая обработка полимерных волокон при высоких температурах (2000°С и выше) приводит к карбонизации и графитизации волокон, в результате чего конечное волокно состоит только из углерода и имеет различную структуру и свойства в зависимости от режима термообработки и структуры исходного сырья. Углеродные волокна непрерывно совершенствуются, повышаются их прочность и жесткость, увеличивается ассортимент. Один из перспективных путей снижения их цены - использование нефтяных и других пеков (тяжелых полиароматических соединений) в качестве исходного сырья. Кроме того, волокна из пеков обладают повышенным модулем упругости. Углеродные волокна и композиты на их основе имеют глубокий черный цвет и хорошо проводят электричество, что определяет и ограничивает области их применения.
На основе углеродных волокон делают различные углепластики, в том числе, и самый теплостойкий композит - углерод-углеродный, в котором матрицей, склеивающей углеродные волокна, служит практически чистый углерод. Более подробно углерод-углеродные композиты будут рассмотрены в гл.13.
Борные волокна получают методом химического осаждения из газовой фазы по реакции :ВС13 +Н2 —> B+ НС1 Осаждение ведется на тонкую (диаметром несколько микрон) вольфрамовую проволоку. Технология получения борного волокна очень сложная, поэтому они имеют высокую стоимость.
Говоря об армирующих волокнах, следует остановиться на высокопрочных высокомодульных полимерных волокнах. Для них характерны низкая плотность, высокая удельная прочность при растяжении и достаточная прочность при сжатии и изгибе, высокое сопротивление динамическим нагрузкам. Полимеры, из которых получают такие волокна, делятся на жесткоцепные [полипарафенилентерефтал-амид (кевлар) и полибензоатиазол] и гибкоцепные (полиэтилен и поливиниловый Спирт). Структура тех и других показана на рис. 11.1. Макромолекулы в волокнах, изготовленных из этих полимеров, в основном ориентирова-
ны в направлении оси волокна и свойства волокна (прочность, модуль упругости и др.) различны вдоль и поперек его. Чем выше степень ориентации макромолекул полимеров, тем выше прочность при растяжении вдоль волокон. Макромолекулы в жесткоцепных полимерах при высокой температуре сами стремятся сориентироваться в одном направлении, поэтому при изготовлении волокон из этих материалов используют стадию термообработки. Основная проблема достижения высоких характеристик волокон из гибкоцепных полимеров. - добиться высоких степеней ориентации в процессе вытяжки и избежать разрывов макромолекул. Полиэтиленовые волокна могут иметь очень высокие прочность и модуль упругости при самой низкой плотности. Однако они имеют и недостатки - низкие рабочие температуры (до 100°С) и плохая адгезия к большинству полимерных матриц. Среди композитов этого типа можно также назвать органопластики (армированные пластики на основе органических полимерных волокон). В качестве армирующего наполнителя органопластиков применяют органические природные и синтетические волокна, нити, жгуты, ткани, трикотаж, холсты и др. Разработаны и применяются и другие волокна. Свойства различных волокон приведены в табл. 11.1, где для сравнения даны характеристики высокопрочного стального волокна.
Таблица 11.1. Свойства различных армирующих волокон
Материал волокна
| Прочность, ГПа
| Модуль упругости, ГПа
| Плотность, г/см3
| Типичный диаметр, мкм
| |
1
| 2
| 3
| 4
| 5
| |
Сталь
| 2-3
| 200
| 7,8
| -
| |
Стекло
| 3,5-4,6
| 72-100
| 2,5-2,9
| 3-25,80
|
Продолжение табл. 11.1
1
| 2
| 3
| 4
| 5
|
Ароматический полиамид | 3,8-5,5 | 120-185 | 1,43-1,47 | 10-12 |
Полибензтиазол
| 3,0-3,3
| 335
| 1,5
| -
|
1
| 2
| 3
| 4
| 5
|
Полиэтилен
| 2-3,5(7)
| 50-125(200)
| <1
| 30-35
|
Углерод высокопрочный
| 3,6-7,2
| 300
| 1,8
| 3-10
|
Углерод высокомодульный
| 2,5-3,25
| 500-800
| 1,8-2,2
| 3-10
|
Оксид алюминия
| 2,2-2,4
| 385-420
| 3,95
| 10-25
|
Карбид кремния
| 3,1-4,0
| 410-450
| 2,7-3,4
| 100-140
|
Бор
| 3,45
| 400
| 2,6
| 100-200
|
- Предисловие
- Введение
- Глава 1. Классификация и критерии конструирования композиционных материалов
- 1.1. Что такое композит?
- 1.2. Классификация композиционных материалов
- 1.3. Критерии конструирования композита
- 1.4. Свойства некоторых современных композиционных материалов
- Глава 2. Периодическая таблица Менделеева. Электронное строение элементов, типы связей и свойства веществ
- 2.1. Периодический закон д.И. Менделеева и свойства элементов
- 2.2. Электронная структура и типы связей элементов и соединений
- Глава 3. Фазовые переходы и их влияние на структуру и свойства материалов
- 3.1. Основные виды фазовых диаграмм двухкомпонентных систем
- 3.2. Фазовые превращения металлических структур
- 3.2.1. Полиморфные превращения
- 3.2.2. Условия образования и виды твердых растворов
- 3.3. Влияние на фазовые переходы внешних полей и размеров компонентов композита
- Глава 4. Физико-химические свойства основных компонентов композитов
- 4.1. Металлы
- 4.2. Полупроводники
- 4.3. Полимеры
- 4.4. Жидкие кристаллы
- 4.5. Стекла
- 4.6. Керамики
- 4.7. Основные группы композиционных материалов
- Глава 5. Термодинамика композиционных систем с границами раздела
- 5.1. Предмет термодинамики. Основные законы классической термодинамики и термодинамические функции состояния системы
- 5.2. Термодинамика систем с поверхностями раздела
- 5.2.1.Обобщенное уравнение термодинамики для систем с поверхностями раздела
- 5.2.2. Термодинамические функции для систем с межфазными границами раздела
- 5.2.3. Условие равновесия на фазовой границе с ненулевой кривизной. Формула Лапласа
- 5.2.4. Поверхностное натяжение и специальные границы
- 5.3. Пути развития термодинамики: от равновесной к неравновесной нелинейной
- Глава 6. Межфазное взаимодействие, совместимость компонентов, стабильность границы и прочность композита
- 6.1. Совместимость компонентов композита
- 6.1.1. Химическая совместимость компонентов
- 6.1.2. Основные термодинамические представления о совместимости материалов
- 6.1.3. Влияние легирующих добавок на стабильность волокнистого композита
- 6.2. Классификация композитов на основе межфазного взаимодействия
- 6.3. Типы связей и стабильность границы раздела композита
- 6.3.1. Типы связей на границе раздела между компонентами композита
- 6.3.2. Термическая и механическая стабильность поверхности раздела композита
- 6.3.3. Прочность границы и характер разрушения композита
- Глава 7. Физические свойства композитов. Упругие и прочностные свойства
- 7.1. Общее определение физических свойств композита. Х-y-эффект
- 7.2. Упругие свойства композиционных материалов
- 7.2.1. Упругие свойства композита, армированного непрерывными волокнами
- 7.2.2. Упругие свойства порошковых композитов
- 7.3. Прочность композиционных материалов
- 7.3.1. Прочность композита, армированного непрерывными волокнами
- Влияние ориентации волокон на разрушение композита.
- 7.3.2. Прочность при растяжении композита, армированного дискретными волокнами.
- 7.3.3. Вязкость разрушения композита
- Глава 8. Адгезия и смачивание в композитах
- 8.1. Основные определения
- 8.2. Формирование межфазного контакта. Уравнения Дюпре и Юнга
- 8.3. Адгезия композиционных материалов
- 8.3.1. Взаимодействие контактирующих поверхностей при адгезии и прочность соединений
- 8.3.2. Адгезионная прочность на поверхности раздела и механические свойства композитов
- 8.4. Смачивание композиционных материалов
- 8.4.1. Смачивание и его роль в технологии и природе
- 8.4.2. Основные условия смачивания в равновесных и неравновесных системах
- 8.4.3. Смачивание различных типов материалов
- Система жидкий металл - тугоплавкое соединение.
- 8.5. Процессы адгезии, смачивания и
- Глава 9. Краткая характеристика и общие методы получения и обработки композитов на основе металлической матрицы
- 9.1. Примеры композитов на основе металлической матрицы
- 9.2. Общая характеристика методов получения композитов с металлической матрицей
- 9.2.1. Классификация методов получения и обработки композитов с металлической матрицей
- 9.2.2. Жидкофазные методы
- 9.2.3. Методы осаждения - напыления
- 9.3. Технологические процессы получения и обработки металлических композиционных материалов
- 9.3.1. Обработка давлением
- 9.3.2. Процессы порошковой металлургии
- 9. 4. Методы получения дисперсно-упрочненных композитов
- 9.5. Методы получения псевдосплавов
- 9.6. Методы получения эвтектических композиционных материалов
- 9.7. Низкотемпературные методы изготовления композитов с металлической матрицей
- Глава 10. Основные виды композитов на основе металлической матрицы. Свойства, методы получения и области применения
- 10.1. Металлические волокнистые композиционные материалы
- 10.1.1. Свойства и методы получения мвкм на основе алюминия
- 10.1.2. Свойства и методы получения мвкм на основе магния
- 10.1.3. Свойства и методы получения мвкм на основе титана
- 10.1.4. Свойства и методы получения мвкм на основе никеля и кобальта
- 10.1.5. Области применения мвкм
- 10.2. Дисперсно-упрочненные композиционные материалы
- 10.2.1 Свойства и методы получения дкм на основе алюминия
- 10.2.2. Свойства и методы получения дкм на основе никеля
- 10.2.3. Свойства и методы получения дкм на основе хрома
- 10.2.4. Свойства и методы получения дкм на основе молибдена
- 10.2.5. Свойства и методы получения дкм на основе вольфрама
- 10.2. 6. Свойства и методы получения дкм на основе серебра
- 10.3. Псевдосплавы
- 10.3.1. Свойства и методы получения псевдосплавов на основе железа
- 10.3.2. Свойства и методы получения псевдосплавов на основе вольфрама и молибдена
- 10.3.3. Свойства и методы получения псевдосплавов на основе никеля
- 10.3.4. Свойства и методы получения псевдосплавов на основе титана
- 10.3.5. Области применения псевдосплавов
- 10.4. Эвтектические композиционные материалы
- Глава 11. Композиты на основе полимерной матрицы. Свойства, методы получения и области применения
- 11.1. Состав и основные свойства полимерных композитов
- 11.1.1. Армирующие волокна для пкм
- 11.1.2. Матрицы для пкм
- 11.1.3. Наногибридные полимер-неорганические композиты
- 11.1.4. Поверхность раздела фаз в пкм
- 11.2. Методы получения полимерных композитов
- 11.2.1. Метод изготовления слоистыл и намотанных пкм
- 11.2.2. Золь-гель-методы получения наногибридных полимер-неорганических композитов
- 11.4. Дендримеры - новый вид полимеров и композиты на их основе
- Глава 12. Жидкокристаллические композиты. Свойства, методы получения и области применения
- 12.1. Основные свойства жидких кристаллов
- 12.2. Методы получения жидкокристаллических композитов
- 12.3. Области применения жкк
- Глава 13. Керамические и углерод-углеродные композиционные материалы. Основные свойства, методы получения и области применения
- 13.1. Керамические композиционные материалы
- 13.1.1. Основные свойства ккм
- 6 Армирование волокнами; в - «затупление» трещины на большой площади
- 13.1.2. Методы получения и области применения ккм
- 13.2. Углерод - углеродные композиционные материалы
- 13.2.1. Основные свойства уукм
- 13.2.2. Методы получения и области применения уукм
- Глава 14. Синергетика процессов создания композитов. Новые виды материалов и технологий: нано- и биоковмпозиты
- Послесловие
- Задачи и упражнения
- Литература основная
- Литература дополнительная
- Содержание
- Глава 1 Классификация и критерии конструирования
- Глава 2. Периодическая таблица Менделеева. Электронная
- Глава 3. Фазовые переходы и их влияние на структуру
- Глава 4. Физико-химические свойства основных компонентов
- Глава 5. Термодинамика композиционных систем
- Глава 6. Межфазное взаимодействие, совместимость компонентов, Стабильность границы и прочность композита................................68
- Глава 7. Физические свойства композитов. Упругие
- Глава 8. Адгезия и смачивание в композитах.........................................90
- Глава 9. Краткая характеристики и общие методы получения и обработки композитов на основе металлической матрицы............................105
- Глава 10. Основные виды композитов на основе м еталличгеской матрицы. Свойства, методы получения и области применения........................ .......... .............114
- Глава 11. Композиты на основе полимерной матрицы. Свойства,
- Глава 12. Жидкокрис галлические композиты. Свойства,
- Глава 14. Синергетика процессов создания композитов.