1.2. Классификация композиционных материалов
Классификация композитов может осуществляться по разным признакам
1) по природе компонентов (обычно материала матрицы); металлические; полимерные; жидкокристаллические; керамические; другие неорганические материалы (углерод, оксиды, бориды и др.).
Если один из компонентов композита непрерывен во всем объеме, а другой является прерывистым, разъединенным, то первый компонент на называют матрицей (связующим), а второй - арматурой (армирующим элементом, наполнителем). Матрица в композите обеспечивает монолитность материала, передачу и распределение напряжений в наполнителе, определяет тепло-, влаго-, огне- и химическую стойкость. Есть композиты, для которых понятие матрицы и арматуры неприменимо, например, для слоистых композитов, состоящих из чередующихся слоев, или для псевдосплавов, имеющих каркасное строение. Псевдосплавы получают пропиткой пористой заготовки более легкоплавкими компонентами, их структура представляет собой два взаимопроникающих непрерывных каркаса. Обычно композиты получают общее название по материалу матрицы.
2) по структуре композита: каркасная; матричная; слоистая;
комбинированная.
К композитам с каркасной структурой относятся, например, псевдосплавы, полученные методом пропитки; с матричной структурой -дисперсно-упрочненные и волокнистые композиты; со слоистой структурой - композиты, составленные из чередующихся слоев фольги или листов материалов различной природы или состава; с комбинированной структурой - включающие комбинации первых трех групп (например, псевдосплавы, каркас которых упрочнен дисперсными включениями -каркасно-матричная структура и др.).
3) по геометрии армирующих компонентов (наполнителя): порошковые и гранулированные (армированы частицами); волокнистые (армированы волокнами, нитевидными кристаллами, делятся на непрерывные и дискретные); слоистые (армированы пленками, пластинами, слоистыми наполнителями).
4) по расположению компонентов (схеме армирования, рис. 1.1): изотропные или квазиизотропные (порошковые, дисперсно-упрочненные, хаотично армированные дисперсными частицами, дискретными или непрерывными волокнами и др.); анизотропные (волокнистые, слоистые с определенной ориентацией армирующих элементов относительно матрицы).
Изотропные материалы имеют одинаковые свойства во всех направлениях, анизотропные - разные. К числу изотропных композитов относятся псевдосплавы и хаотично армированные материалы. Упрочнение хаотично армированных композитов осуществляется короткими (дискретными) частицами игольчатой формы, ориентированными в пространстве случайным образом. В качестве таких частиц используют отрезки волокон или нитевидные кристаллы (усы), при этом композиты получаются квазиизотропными, т.е. анизотропными в микрообъемах, но изотропными в макрообъеме всего изделия.
Анизотропия композита является конструкционной, она закладывается специально для изготовления конструкций, в которых наиболее рационально ее использовать. Возможность управления свойствами вновь создаваемых материалов, особенно хорошо реализуемая при проектировании гибридных (армированных несколькими типами наполнителей) композитов, оказывает существенное влияние на совершенствование технологического проектирования. Например, композиты с матричной структурой, упрочненные армирующими элементами, ориентированными определенным образом в пространстве, относятся к упорядочение армированным. Они подразделяются на одноосноармированные или однонаправленные (с расположением арматуры вдоль одной оси), двухосноармированные (с плоскостным расположением арматуры) и трехосноармированные (с объемным расположением арматуры).
Часто композит представляет собой слоистую структуру, в которой каждый слой армирован большим числом параллельных непрерывных волокон. Однако каждый слой можно армировать также непрерывными волокнами, сотканными в ткань определенного рисунка (средний ряд на рис. 1.1), которая представляет собой исходную форму, по ширине и длине соответствующую исходному материалу. Разработанные к настоящему времени геометрии армирования позволили отказаться от послойной сборки материала: волокна сплетают в трехмерные структуры (нижний ряд на рис. 1.1). В некоторых случаях уже на этой стадии можно задать форму изделию из композита. Выбор среди возможных типов армирования осуществляется на основе экономических соображений и требований, предъявляемых к работе изделий.
Традиционно выбор материала и проектирование компонентов конструкции были отдельными задачами. Когда композиты стали вытеснять металлы и сплавы из таких областей, как самолето-, судо- и автомобилестроение, промышленный дизайн и выбор материала соединились и стали просто различными аспектами одного процесса.
Контроль микроструктуры композита позволяет наилучшим образом учесть распределение нагрузок, которым будет подвергаться изделие. В то же время в конструкции изделия отразятся и отличительные
свойства композита: зависимость от ориентации и сложности формы, которую им можно придать в процессах формования - при прессовании, прокатке, намотке, армировании и др. Трудности, возникающие при одновременном конструировании изделия и его материала, предполагают, что промышленный дизайн будет все больше зависеть от совместных разработок специалистов разных областей, а также от компьютерного моделирования этих работ. Только такой подход обеспечит полное использование потенциальных возможностей композитов в технологиях будущего. частицы непрерывные волокна короткие волокна
трехмерная цилиндрическая трехмерное плетение трехмерная ортогональная
конструкция основа
Рис.1.1. Различные геометрии армирующих компонентов и схемы армирования композитов
Следует отметить, что наряду с конструкционной анизотропией композита существуют технологическая анизотропия, возникающая при пластической деформации изотропных материалов, и физическая анизотропия, присущая, например, кристаллам и связанная с особенностями строения кристаллической решетки.
5) по количеству компонентов: полиматричные - использование в одном материале нескольких матриц; гибридные (полиармированные) -использование наполнителей различной природы
Композиты, которые содержат два или более различных по составу или природе типа армирующих элементов, называются полиармированными или гибридными. Гибридные композиты могут быть простыми, если армирующие элементы имеют различную природу, но одинаковую геометрию (например, стеклоуглепластик - полимер, армированный стеклянными и углеродными волокнами), и комбинированными, если армирующие элементы имеют и различную природу, и различную геометрию (например, бороалюминий с прослойками из титановой фольги).
6) по методу получения: искусственные; естественные. К искусственным относятся все композиты, полученные в результате искусственного введения армирующей фазы в матрицу, к естественным - сплавы эвтектического и близкого к ним состава. В эвтектических композитах армирующей фазой являются ориентированные волокнистые или пластинчатые кристаллы, образованные естественным путем в процессе направленной кристаллизации.
По мере создания новых композитов «старые» виды классификации расширяются и могут возникать новые.
- Предисловие
- Введение
- Глава 1. Классификация и критерии конструирования композиционных материалов
- 1.1. Что такое композит?
- 1.2. Классификация композиционных материалов
- 1.3. Критерии конструирования композита
- 1.4. Свойства некоторых современных композиционных материалов
- Глава 2. Периодическая таблица Менделеева. Электронное строение элементов, типы связей и свойства веществ
- 2.1. Периодический закон д.И. Менделеева и свойства элементов
- 2.2. Электронная структура и типы связей элементов и соединений
- Глава 3. Фазовые переходы и их влияние на структуру и свойства материалов
- 3.1. Основные виды фазовых диаграмм двухкомпонентных систем
- 3.2. Фазовые превращения металлических структур
- 3.2.1. Полиморфные превращения
- 3.2.2. Условия образования и виды твердых растворов
- 3.3. Влияние на фазовые переходы внешних полей и размеров компонентов композита
- Глава 4. Физико-химические свойства основных компонентов композитов
- 4.1. Металлы
- 4.2. Полупроводники
- 4.3. Полимеры
- 4.4. Жидкие кристаллы
- 4.5. Стекла
- 4.6. Керамики
- 4.7. Основные группы композиционных материалов
- Глава 5. Термодинамика композиционных систем с границами раздела
- 5.1. Предмет термодинамики. Основные законы классической термодинамики и термодинамические функции состояния системы
- 5.2. Термодинамика систем с поверхностями раздела
- 5.2.1.Обобщенное уравнение термодинамики для систем с поверхностями раздела
- 5.2.2. Термодинамические функции для систем с межфазными границами раздела
- 5.2.3. Условие равновесия на фазовой границе с ненулевой кривизной. Формула Лапласа
- 5.2.4. Поверхностное натяжение и специальные границы
- 5.3. Пути развития термодинамики: от равновесной к неравновесной нелинейной
- Глава 6. Межфазное взаимодействие, совместимость компонентов, стабильность границы и прочность композита
- 6.1. Совместимость компонентов композита
- 6.1.1. Химическая совместимость компонентов
- 6.1.2. Основные термодинамические представления о совместимости материалов
- 6.1.3. Влияние легирующих добавок на стабильность волокнистого композита
- 6.2. Классификация композитов на основе межфазного взаимодействия
- 6.3. Типы связей и стабильность границы раздела композита
- 6.3.1. Типы связей на границе раздела между компонентами композита
- 6.3.2. Термическая и механическая стабильность поверхности раздела композита
- 6.3.3. Прочность границы и характер разрушения композита
- Глава 7. Физические свойства композитов. Упругие и прочностные свойства
- 7.1. Общее определение физических свойств композита. Х-y-эффект
- 7.2. Упругие свойства композиционных материалов
- 7.2.1. Упругие свойства композита, армированного непрерывными волокнами
- 7.2.2. Упругие свойства порошковых композитов
- 7.3. Прочность композиционных материалов
- 7.3.1. Прочность композита, армированного непрерывными волокнами
- Влияние ориентации волокон на разрушение композита.
- 7.3.2. Прочность при растяжении композита, армированного дискретными волокнами.
- 7.3.3. Вязкость разрушения композита
- Глава 8. Адгезия и смачивание в композитах
- 8.1. Основные определения
- 8.2. Формирование межфазного контакта. Уравнения Дюпре и Юнга
- 8.3. Адгезия композиционных материалов
- 8.3.1. Взаимодействие контактирующих поверхностей при адгезии и прочность соединений
- 8.3.2. Адгезионная прочность на поверхности раздела и механические свойства композитов
- 8.4. Смачивание композиционных материалов
- 8.4.1. Смачивание и его роль в технологии и природе
- 8.4.2. Основные условия смачивания в равновесных и неравновесных системах
- 8.4.3. Смачивание различных типов материалов
- Система жидкий металл - тугоплавкое соединение.
- 8.5. Процессы адгезии, смачивания и
- Глава 9. Краткая характеристика и общие методы получения и обработки композитов на основе металлической матрицы
- 9.1. Примеры композитов на основе металлической матрицы
- 9.2. Общая характеристика методов получения композитов с металлической матрицей
- 9.2.1. Классификация методов получения и обработки композитов с металлической матрицей
- 9.2.2. Жидкофазные методы
- 9.2.3. Методы осаждения - напыления
- 9.3. Технологические процессы получения и обработки металлических композиционных материалов
- 9.3.1. Обработка давлением
- 9.3.2. Процессы порошковой металлургии
- 9. 4. Методы получения дисперсно-упрочненных композитов
- 9.5. Методы получения псевдосплавов
- 9.6. Методы получения эвтектических композиционных материалов
- 9.7. Низкотемпературные методы изготовления композитов с металлической матрицей
- Глава 10. Основные виды композитов на основе металлической матрицы. Свойства, методы получения и области применения
- 10.1. Металлические волокнистые композиционные материалы
- 10.1.1. Свойства и методы получения мвкм на основе алюминия
- 10.1.2. Свойства и методы получения мвкм на основе магния
- 10.1.3. Свойства и методы получения мвкм на основе титана
- 10.1.4. Свойства и методы получения мвкм на основе никеля и кобальта
- 10.1.5. Области применения мвкм
- 10.2. Дисперсно-упрочненные композиционные материалы
- 10.2.1 Свойства и методы получения дкм на основе алюминия
- 10.2.2. Свойства и методы получения дкм на основе никеля
- 10.2.3. Свойства и методы получения дкм на основе хрома
- 10.2.4. Свойства и методы получения дкм на основе молибдена
- 10.2.5. Свойства и методы получения дкм на основе вольфрама
- 10.2. 6. Свойства и методы получения дкм на основе серебра
- 10.3. Псевдосплавы
- 10.3.1. Свойства и методы получения псевдосплавов на основе железа
- 10.3.2. Свойства и методы получения псевдосплавов на основе вольфрама и молибдена
- 10.3.3. Свойства и методы получения псевдосплавов на основе никеля
- 10.3.4. Свойства и методы получения псевдосплавов на основе титана
- 10.3.5. Области применения псевдосплавов
- 10.4. Эвтектические композиционные материалы
- Глава 11. Композиты на основе полимерной матрицы. Свойства, методы получения и области применения
- 11.1. Состав и основные свойства полимерных композитов
- 11.1.1. Армирующие волокна для пкм
- 11.1.2. Матрицы для пкм
- 11.1.3. Наногибридные полимер-неорганические композиты
- 11.1.4. Поверхность раздела фаз в пкм
- 11.2. Методы получения полимерных композитов
- 11.2.1. Метод изготовления слоистыл и намотанных пкм
- 11.2.2. Золь-гель-методы получения наногибридных полимер-неорганических композитов
- 11.4. Дендримеры - новый вид полимеров и композиты на их основе
- Глава 12. Жидкокристаллические композиты. Свойства, методы получения и области применения
- 12.1. Основные свойства жидких кристаллов
- 12.2. Методы получения жидкокристаллических композитов
- 12.3. Области применения жкк
- Глава 13. Керамические и углерод-углеродные композиционные материалы. Основные свойства, методы получения и области применения
- 13.1. Керамические композиционные материалы
- 13.1.1. Основные свойства ккм
- 6 Армирование волокнами; в - «затупление» трещины на большой площади
- 13.1.2. Методы получения и области применения ккм
- 13.2. Углерод - углеродные композиционные материалы
- 13.2.1. Основные свойства уукм
- 13.2.2. Методы получения и области применения уукм
- Глава 14. Синергетика процессов создания композитов. Новые виды материалов и технологий: нано- и биоковмпозиты
- Послесловие
- Задачи и упражнения
- Литература основная
- Литература дополнительная
- Содержание
- Глава 1 Классификация и критерии конструирования
- Глава 2. Периодическая таблица Менделеева. Электронная
- Глава 3. Фазовые переходы и их влияние на структуру
- Глава 4. Физико-химические свойства основных компонентов
- Глава 5. Термодинамика композиционных систем
- Глава 6. Межфазное взаимодействие, совместимость компонентов, Стабильность границы и прочность композита................................68
- Глава 7. Физические свойства композитов. Упругие
- Глава 8. Адгезия и смачивание в композитах.........................................90
- Глава 9. Краткая характеристики и общие методы получения и обработки композитов на основе металлической матрицы............................105
- Глава 10. Основные виды композитов на основе м еталличгеской матрицы. Свойства, методы получения и области применения........................ .......... .............114
- Глава 11. Композиты на основе полимерной матрицы. Свойства,
- Глава 12. Жидкокрис галлические композиты. Свойства,
- Глава 14. Синергетика процессов создания композитов.