Послесловие
Заканчивая книгу, которая по сути является введением в неисчерпаемый мир умело составленных композиций различных материалов, молекул, элементов живой и неживой природы с новыми свойствами, автор надеется, что среди читателей найдутся те, кто «озарят» новыми идеями, подходами, решениями науку конструирования композитов с необычными свойствами. Они реализуют свои мысли в виде компьютерных моделей с учетом всех «за» и «против», а затем от виртуальных моделей перейдут к реальным, воплотив свои идеи в жизнь на благо человека.
На протяжении всей книги, начиная с классификации и кончая проблемами синергетики при конструировании новых видов нано-, био-, жидкокристаллических и других композиционных материалов, мне хотелось показать панораму, представить богатство путей новых поисков, подчеркнуть мультидисциплинарность и нелинейность подхода к анализу свойств композитных систем. Развитие междисциплинарного подхода отражает потребность перейти на каком-то уровне развития науки от специализации и детализации к обобщению, синтезу, к выбору наиболее интересных и важных проблем из океана нашего Незнания. Синергетика, теория самоорганизации - это способ взглянуть на проблему открытых нелинейных систем по существу. Эту мысль хорошо отражает цитата из книги «Новое в синергетике»: «Чтобы быстрая и глубокая река не превратилась в мелкое озеро со стоячей водой, ей надо иметь берега. И, конечно, большое желание из этих берегов выйти».
В середине 2000 г. сделано, возможно, одно из самых важных открытий XX в. - расшифровка генома человека. Геном - это хранилище генетической информации, записанной в структуре ДНК, своеобразный код программы жизни, который во многом определяет работу организма в течение всего отпущенного ему срока Задача исследования информационного содержания геномов исключительно сложна, поскольку природа кодов, посредством которых записана информация до конца не выяснена. Подобные открытия создают необходимые условия для разработки на базе биокомпозитов не только уникальных лекарств, но и для решения задач конструирования нейрокомпьютеров будущего.
По прогнозам ученых XXI век будет веком биоинформации. Сегодня почти все биофизики в мире уверены, что очень скоро молекулярные биологические машины совершат настоящую революцию в представлениях человека об окружающем мире.
Перспективы развития нанотехнологии трудно вообразить. В медицине все существующие методы лечения изменятся до неузнаваемости. Не надо будет кормить пациентов таблетками, оперировать, пересаживать органы и др. Все будет происходить на молекулярном уровне. В пациента будут «запускать» систему биокомпозиционных машин, которая в зависимости от ситуации станет лечить зараженные вирусом или мутировавшие клетки, изменяя структуру ДНК или перестраивая ее. Планируется создать компьютеры на основе биочипов, состоящих из молекул ДНК. Ведь на ДНК любой бактерии можно поместить в миллионы раз больше информации, чем вмещает память современного компьютера. С помощью таких персональных компьютеров вполне реально разработать программы по созданию новых молекулярных машин и, главное, алгоритмов их действия.
И самое удивительное, что все это не такая уж фантастика. В начале 90-х годов XX в. корпорация "Xerox" создала первого молекулярного робота (похожего на треногу с рукой), способного вылавливать из окружающей его жидкости определенные молекулы и складывать их в специальную мембранную капсулу, а затем прикреплять атомы друг к другу с точностью до нанометров. По прогнозам специалистов первые персональные компьютеры на основе ДНК появятся у человечества к 2020 - 2030 гг. А там недалеко до искусственного разума. Конечно, в книге по разным причинам удалось рассказать отнюдь не обо всех физико-химических свойствах композитов.
Во-первых, из-за лавины сообщений о разработке новых композиций материалов с уникальными свойствами, которые применяются в науке, технике, быту, т.е. в нашей с вами жизни. Такие сообщения постоянно появляются не только на периодических научных конференциях и в журнальных статьях, но и на многочисленных страницах Всемирной паутины Internet университетов, фирм, отдельных граждан. Далее показан "кусочек" одной из таких страниц с программой "DIODE", где ученые ряда крупных европейских университетов и индустриальных центров объединились в решении задачи создания новых приборов (высокочастотных диодов для телекоммуникационных приложений) на базе композитов, сочетающих органические и неорганические материалы.
Во-вторых, в наш информационный век чем дольше пишешь, тем быстрее устаревает информация, хотя, надеюсь, что основы конструирования композитов и накопленный опыт пригодятся всегда,
В-третьих....
Автор не может не поблагодарить за внимание к своему труду и желает вам доброго пути по дороге, ведущей в будущее..., ибо нет ничего на свете радостнее чувства открытия и познания.
Network Objectives Network Aims
• DIODE network brings together experienced academic research groups and industrial centres with a common aim to integrate inorganic and organic materials in improved practical devices with a particular focus on high-frequency diodes for telecommunication applications.
• DIODE network provides highly trained researchers to secure for Europe a leading position in the exploitation of novel hybrid inorganic/organic devices going well beyond the high-frequency applications.
• Involvement of international manufacturers of inorganic semiconductors, organic molecules and end product devices ensures that new basic understanding is rapidly translated into improved technology.
Research Motivation
• Molecular and organic materials are rapidly making a huge impact in the field of semiconductor science and technology.
• Low mobility of organic semiconductors precludes the complete- replacement of compound inorganic materials. However, these materials do have a major role to play in the control of electronic devices based on conventional inorganic semiconductor technology.
• Inclusion of well-defined molecular layers in inorganic Schottky diodes introduces a new degree of freedom in the control of fundamental device parameters. That simple concept belies the considerable complexity of its technological realisation.
• requires a multi- disciplinary approach where a combined experimental and theoretical effort sets out, for the first time to systematically determine the optimum materials and procedures for device performance.
Web - страница с интеграционной научной программой «DIODE"
- Предисловие
- Введение
- Глава 1. Классификация и критерии конструирования композиционных материалов
- 1.1. Что такое композит?
- 1.2. Классификация композиционных материалов
- 1.3. Критерии конструирования композита
- 1.4. Свойства некоторых современных композиционных материалов
- Глава 2. Периодическая таблица Менделеева. Электронное строение элементов, типы связей и свойства веществ
- 2.1. Периодический закон д.И. Менделеева и свойства элементов
- 2.2. Электронная структура и типы связей элементов и соединений
- Глава 3. Фазовые переходы и их влияние на структуру и свойства материалов
- 3.1. Основные виды фазовых диаграмм двухкомпонентных систем
- 3.2. Фазовые превращения металлических структур
- 3.2.1. Полиморфные превращения
- 3.2.2. Условия образования и виды твердых растворов
- 3.3. Влияние на фазовые переходы внешних полей и размеров компонентов композита
- Глава 4. Физико-химические свойства основных компонентов композитов
- 4.1. Металлы
- 4.2. Полупроводники
- 4.3. Полимеры
- 4.4. Жидкие кристаллы
- 4.5. Стекла
- 4.6. Керамики
- 4.7. Основные группы композиционных материалов
- Глава 5. Термодинамика композиционных систем с границами раздела
- 5.1. Предмет термодинамики. Основные законы классической термодинамики и термодинамические функции состояния системы
- 5.2. Термодинамика систем с поверхностями раздела
- 5.2.1.Обобщенное уравнение термодинамики для систем с поверхностями раздела
- 5.2.2. Термодинамические функции для систем с межфазными границами раздела
- 5.2.3. Условие равновесия на фазовой границе с ненулевой кривизной. Формула Лапласа
- 5.2.4. Поверхностное натяжение и специальные границы
- 5.3. Пути развития термодинамики: от равновесной к неравновесной нелинейной
- Глава 6. Межфазное взаимодействие, совместимость компонентов, стабильность границы и прочность композита
- 6.1. Совместимость компонентов композита
- 6.1.1. Химическая совместимость компонентов
- 6.1.2. Основные термодинамические представления о совместимости материалов
- 6.1.3. Влияние легирующих добавок на стабильность волокнистого композита
- 6.2. Классификация композитов на основе межфазного взаимодействия
- 6.3. Типы связей и стабильность границы раздела композита
- 6.3.1. Типы связей на границе раздела между компонентами композита
- 6.3.2. Термическая и механическая стабильность поверхности раздела композита
- 6.3.3. Прочность границы и характер разрушения композита
- Глава 7. Физические свойства композитов. Упругие и прочностные свойства
- 7.1. Общее определение физических свойств композита. Х-y-эффект
- 7.2. Упругие свойства композиционных материалов
- 7.2.1. Упругие свойства композита, армированного непрерывными волокнами
- 7.2.2. Упругие свойства порошковых композитов
- 7.3. Прочность композиционных материалов
- 7.3.1. Прочность композита, армированного непрерывными волокнами
- Влияние ориентации волокон на разрушение композита.
- 7.3.2. Прочность при растяжении композита, армированного дискретными волокнами.
- 7.3.3. Вязкость разрушения композита
- Глава 8. Адгезия и смачивание в композитах
- 8.1. Основные определения
- 8.2. Формирование межфазного контакта. Уравнения Дюпре и Юнга
- 8.3. Адгезия композиционных материалов
- 8.3.1. Взаимодействие контактирующих поверхностей при адгезии и прочность соединений
- 8.3.2. Адгезионная прочность на поверхности раздела и механические свойства композитов
- 8.4. Смачивание композиционных материалов
- 8.4.1. Смачивание и его роль в технологии и природе
- 8.4.2. Основные условия смачивания в равновесных и неравновесных системах
- 8.4.3. Смачивание различных типов материалов
- Система жидкий металл - тугоплавкое соединение.
- 8.5. Процессы адгезии, смачивания и
- Глава 9. Краткая характеристика и общие методы получения и обработки композитов на основе металлической матрицы
- 9.1. Примеры композитов на основе металлической матрицы
- 9.2. Общая характеристика методов получения композитов с металлической матрицей
- 9.2.1. Классификация методов получения и обработки композитов с металлической матрицей
- 9.2.2. Жидкофазные методы
- 9.2.3. Методы осаждения - напыления
- 9.3. Технологические процессы получения и обработки металлических композиционных материалов
- 9.3.1. Обработка давлением
- 9.3.2. Процессы порошковой металлургии
- 9. 4. Методы получения дисперсно-упрочненных композитов
- 9.5. Методы получения псевдосплавов
- 9.6. Методы получения эвтектических композиционных материалов
- 9.7. Низкотемпературные методы изготовления композитов с металлической матрицей
- Глава 10. Основные виды композитов на основе металлической матрицы. Свойства, методы получения и области применения
- 10.1. Металлические волокнистые композиционные материалы
- 10.1.1. Свойства и методы получения мвкм на основе алюминия
- 10.1.2. Свойства и методы получения мвкм на основе магния
- 10.1.3. Свойства и методы получения мвкм на основе титана
- 10.1.4. Свойства и методы получения мвкм на основе никеля и кобальта
- 10.1.5. Области применения мвкм
- 10.2. Дисперсно-упрочненные композиционные материалы
- 10.2.1 Свойства и методы получения дкм на основе алюминия
- 10.2.2. Свойства и методы получения дкм на основе никеля
- 10.2.3. Свойства и методы получения дкм на основе хрома
- 10.2.4. Свойства и методы получения дкм на основе молибдена
- 10.2.5. Свойства и методы получения дкм на основе вольфрама
- 10.2. 6. Свойства и методы получения дкм на основе серебра
- 10.3. Псевдосплавы
- 10.3.1. Свойства и методы получения псевдосплавов на основе железа
- 10.3.2. Свойства и методы получения псевдосплавов на основе вольфрама и молибдена
- 10.3.3. Свойства и методы получения псевдосплавов на основе никеля
- 10.3.4. Свойства и методы получения псевдосплавов на основе титана
- 10.3.5. Области применения псевдосплавов
- 10.4. Эвтектические композиционные материалы
- Глава 11. Композиты на основе полимерной матрицы. Свойства, методы получения и области применения
- 11.1. Состав и основные свойства полимерных композитов
- 11.1.1. Армирующие волокна для пкм
- 11.1.2. Матрицы для пкм
- 11.1.3. Наногибридные полимер-неорганические композиты
- 11.1.4. Поверхность раздела фаз в пкм
- 11.2. Методы получения полимерных композитов
- 11.2.1. Метод изготовления слоистыл и намотанных пкм
- 11.2.2. Золь-гель-методы получения наногибридных полимер-неорганических композитов
- 11.4. Дендримеры - новый вид полимеров и композиты на их основе
- Глава 12. Жидкокристаллические композиты. Свойства, методы получения и области применения
- 12.1. Основные свойства жидких кристаллов
- 12.2. Методы получения жидкокристаллических композитов
- 12.3. Области применения жкк
- Глава 13. Керамические и углерод-углеродные композиционные материалы. Основные свойства, методы получения и области применения
- 13.1. Керамические композиционные материалы
- 13.1.1. Основные свойства ккм
- 6 Армирование волокнами; в - «затупление» трещины на большой площади
- 13.1.2. Методы получения и области применения ккм
- 13.2. Углерод - углеродные композиционные материалы
- 13.2.1. Основные свойства уукм
- 13.2.2. Методы получения и области применения уукм
- Глава 14. Синергетика процессов создания композитов. Новые виды материалов и технологий: нано- и биоковмпозиты
- Послесловие
- Задачи и упражнения
- Литература основная
- Литература дополнительная
- Содержание
- Глава 1 Классификация и критерии конструирования
- Глава 2. Периодическая таблица Менделеева. Электронная
- Глава 3. Фазовые переходы и их влияние на структуру
- Глава 4. Физико-химические свойства основных компонентов
- Глава 5. Термодинамика композиционных систем
- Глава 6. Межфазное взаимодействие, совместимость компонентов, Стабильность границы и прочность композита................................68
- Глава 7. Физические свойства композитов. Упругие
- Глава 8. Адгезия и смачивание в композитах.........................................90
- Глава 9. Краткая характеристики и общие методы получения и обработки композитов на основе металлической матрицы............................105
- Глава 10. Основные виды композитов на основе м еталличгеской матрицы. Свойства, методы получения и области применения........................ .......... .............114
- Глава 11. Композиты на основе полимерной матрицы. Свойства,
- Глава 12. Жидкокрис галлические композиты. Свойства,
- Глава 14. Синергетика процессов создания композитов.