2.2.1. Постоянное улучшение экологической результативности и вопросы воздействия на различные компоненты окружающей среды
Общая характеристика
Важным элементом системы экологического менеджмента (СЭМ, наличие которой является НДТ во всех секторах КПКЗ) является обеспечение повышения общей экологической результативности. Важно, чтобы оператор понимал, что происходит с входными потоками, включая энергию, и каким образом их потребление ведет к загрязнению окружающей среды. Столь же важно, управляя значимыми входными и выходным потоками, поддерживать оптимальный баланс между сокращением загрязнения и прочими аспектами воздействия на окружающую среду, включая связанные с потреблением энергии, воды и сырья. Это позволяет снизить общее воздействие на окружающую среду, связанное с деятельностью установки.
Для обеспечения комплексного подхода к контролю загрязнения важно рассматривать постоянное улучшение экологической результативности в качестве одного из приоритетов бизнеспланирования для установки. Это касается кратко-, средне- и долгосрочного планирования для установки в целом, а также ее отдельных компонентов и/или систем. «Непрерывное» в данном контексте означает, что цель повышения экологической результативности постоянно присутствует в деятельности организации, и для его обеспечения периодически повторяется цикл планирования и последующих действий.
Вопросы потребления всех значимых ресурсов (в т.ч. энергии), а также контроля загрязнения должны решаться скоординированным образом в кратко-, средне- и долгосрочной перспективе, причем этот процесс должен быть согласован с циклами инвестиционного и финансового планирования. В противном случае возможна ситуация, когда, например, внедрение краткосрочного решения по контролю загрязнения «на конце трубы» обусловит повышенное энергопотребление в долгосрочной перспективе, одновременно побудив оператора отложить инвестиции в решения, более благоприятные для окружающей среды (см. «Примеры» ниже). Анализ подобных ситуаций требует учета воздействия на различные компоненты окружающей среды. Некоторые рекомендации по такому учету, а также оценке затрат и выгод, связанных с различными решениями, приведены в разделе 1.1.6; более подробная информация доступна в Справочном документе по экономическим аспектам и вопросам воздействия на различные компоненты окружающей среды [167, EIPPCB, 2006], а также в разделах настоящего документа, посвященных энергоэффективному проектированию и другим вопросам (раздел 2.2.2 и т.д.).
Повышение экологической результативности с течением времени не обязательно носит линейный характер, т.е. далеко не всегда удается обеспечить, например, 2% дополнительного энергосбережения за каждый год на протяжении 10 лет. Повышение результативности может носить нерегулярный и ступенчатый характер, отражая инвестиции в проекты по повышению энергоэффективности и действие других факторов. Кроме того, может сыграть свою роль повышение результативности по другим направлениям: например, дополнительное снижение выбросов в атмосферу может потребовать увеличения энергопотребления. Как показано на рис. 2.2, энергопотребление установки может:
•снижаться после первого энергоаудита в результате мер, предпринятых по его итогам;
•повышаться вследствие установки дополнительного средозащитного оборудования;
•вновь снижаться, отражая дальнейшие меры и инвестиции, направленные на повышение энергоэффективности.
При этом наблюдается общая тенденция к снижению энергопотребления вследствие планирования на долгосрочную перспективу и соответствующих инвестиций.
- Предисловие
- 1. Статус настоящего документа
- 2. Мандат на подготовку настоящего документа
- 3. Значимые нормативно-правовые положения Директивы КПКЗ и определение НДТ
- Область применения
- 1.2. Понятие энергии и законы термодинамики
- 1.2.1. Энергия, теплота, мощность и работа
- 1.2.2.4. Диаграммы свойств
- 1.3.5. Значимость систем и границ систем
- 1.3.6. Другие используемые термины
- 1.3.6.1. Первичная энергия, вторичная энергия и конечная энергия
- 1.3.6.2. Теплота сгорания топлива и КПД
- 1.5.2. Другие существенные вопросы, заслуживающие рассмотрения на уровне установки
- 1.5.2.1. Документирование используемых подходов к отчетности
- 1.5.2.2. Внутреннее производство и потребление энергии
- 1.5.2.3. Утилизация энергии отходов и газа, сжигаемого в факелах
- 1.5.2.6. Интеграция энергосистем
- 1.5.2.7. Неэффективное использование энергии из соображений устойчивого развития и/или повышения энергоэффективности предприятия в целом
- 2.2. Планирование и определение целей и задач
- 2.2.1. Постоянное улучшение экологической результативности и вопросы воздействия на различные компоненты окружающей среды
- 2.3. Энергоэффективное проектирование (ЭЭП)
- 2.3.1. Выбор технологии производственного процесса
- 2.6. Поддержание и повышение квалификации персонала
- 2.7. Информационный обмен
- 2.8. Эффективный контроль технологических процессов
- 2.8.1. Автоматизированные системы управления технологическими процессами
- 2.9. Техническое обслуживание
- 2.10.2. Оценки и расчеты
- 2.15. Энергетические модели
- 2.15.1. Энергетические модели, базы данных и балансы
- 2.16. Сравнительный анализ
- 3. Технологии, которые следует рассматривать для обеспечения энергоэффективности на уровне энергопотребляющих систем, процессов и видов деятельности
- 3.1. Сжигание
- 3.1.1. Снижение температуры дымовых газов
- 3.1.2. Рекуперативные и регенеративные горелки
- 3.1.5. Выбор топлива
- 3.1.8. Сокращение потерь тепла через отверстия печей
- 3.2. Паровые системы
- 3.2.1. Общие свойства пара
- 3.2.4. Методы эксплуатации и управления технологическим процессом
- 3.2.8. Оптимизация расхода пара в деаэраторе
- 3.2.11. Теплоизоляция паропроводов и конденсатопроводов
- 3.2.12. Реализация программы контроля состояния конденсатоотводчиков и их ремонта
- 3.2.13. Сбор и возврат конденсата в котел
- 3.3.1. Теплообменники
- 3.3.2. Тепловые насосы (в т.ч. механическая рекомпрессия пара)
- 3.4. Когенерация
- 3.4.1. Различные методы когенерации
- 3.4.2. Тригенерация
- 3.5. Электроснабжение
- 3.5.1. Компенсация реактивной мощности
- 3.5.3. Оптимизация систем электроснабжения
- 3.6.1. Энергоэффективные двигатели
- 3.7. Системы сжатого воздуха
- 3.7.1. Оптимизация общего устройства системы
- 3.7.3. Высокоэффективные электродвигатели
- 3.7.5. Утилизация тепла
- 3.7.7. Техническое обслуживание фильтров
- 3.7.10. Создание запаса сжатого воздуха вблизи потребителей с существенно варьирующим уровнем потребления
- 3.8. Насосные системы
- 3.9.2.2. Повышение эффективности существующей вентиляционной системы
- 3.10. Освещение
- 3.11. Процессы сушки, сепарации и концентрирования
- 3.11.2. Механические процессы
- 3.11.3. Методы термической сушки
- 3.11.3.1. Расчет энергозатрат и КПД
- 3.11.3.4. Перегретый пар
- 3.11.4. Радиационная сушка
- 4. Наилучшие доступные технологии
- 4.1. Введение
- 4.2. Наилучшие доступные технологии обеспечения энергоэффективности на уровне установки
- 4.2.1. Менеджмент энергоэффективности
- 4.2.3. Энергоэффективное проектирование (ЭЭП)
- 4.2.4. Повышение степени интеграции технологических процессов
- 4.2.9. Мониоринг и измерения
- 4.3. Наилучшие доступные технологии обеспечения энергоэффективности энергопотребляющих систем, технологических процессов, видов деятельности и оборудования
- 4.3.1. Сжигание
- 4.3.10. Освещение
- 4.3.11. Процессы сушки, сепарации и концентрирования
- 5.2. Сжатый воздух как средство хранения энергии
- 6. Заключительные замечания
- 6.1. Временные рамки и основные этапы подготовки настоящего документа
- 6.2. Источники информации
- 6.3. Степень консенсуса
- 6.4. Пробелы и дублирование информации. Рекомендации по дальнейшему сбору информации и исследованиям
- 6.4.1. Пробелы и дублирование информации
- 6.5. Пересмотр настоящего документа
- Источники
- Глоссарий
- 7. Приложения
- 7.1. Энергия и законы термодинамики
- 7.1.1.Общие принципы
- 7.1.1.1.Описание систем и процессов
- 7.1.2. Первый и второй законы термодинамики
- 7.1.2.1. Первый закон термодинамики: баланс энергии
- 7.1.3. Диаграммы свойств, таблицы свойств, базы данных и программы
- 7.1.3.1. Диаграммы свойств
- 7.1.3.3. Источники неэффективности
- 7.1.4. Использованные обозначения
- 7.2. Примеры термодинамической необратимости
- 7.2.1. Пример 1. Дросселирование
- 7.6. Пример подхода к поступательному развитию инициатив в сфере энергоэффективности: «совершенство в производственной деятельности»
- 7.7. Мониторинг и измерения
- 7.7.1. Количественные измерения
- 7.7.2. Оптимизация использования энергоресурсов
- 7.9. Сравнительный анализ
- 7.9.1. Нефтеперерабатывающие заводы
- 7.9.6. Распределение энергозатрат и выбросов CO2 между различными видами продукции в сложном последовательном процессе
- 7.10. Примеры к главе 3
- 7.10.1. Паровые системы
- 7.10.2. Утилизация отходящего тепла
- 7.11. Мероприятия на стороне потребителя
- 7.13. Сайт Европейской комиссии, посвященный вопросам энергоэффективности и Национальные планы действий государств-членов
- 7.15. Оптимизация транспортных систем
- 7.15.3. Улучшение упаковки с целью оптимизации использования транспорта