7.1.3.1. Диаграммы свойств
Согласно постулату состояния, задание любых двух свойств равновесного состояния системы, состоящей из простого чистого вещества, однозначно определяет любой третье свойство. Из этого следует, в частности, что состояние однокомпонентной системы (системы, состоящей из одного чистого вещества) может быть представлено точкой на двумерной диаграмме, по осям которой отложены два независимых свойства. Пять основных свойств, обычно используемых при построении диаграмм свойств, включают: давление (P), температуру (T), удельный объем (v), удельную энтальпию (h) и удельную энтропию (s). Для системы, состоящей из двух фаз или компонентов, вводится дополнительное свойство «качество» (x), отражающий состав системы. Чаще всего используются следующие виды диаграмм свойств: давление – температура (P–T), давление – удельный объем (P–v), температура – удельный объем (T–v), температура – (удельная) энтропия (T–s), а также (удельная) энтальпия – (удельная) энтропия (–s). Все эти диаграммы могут быть полезны для графического представления различных процессов. Кроме того, три первые диаграммы могут использоваться для иллюстрации соотношения между тремя фазами вещества.
В качестве примера на рис. 7.1 представлена диаграмма T–s. Диаграммы T–s широко применяются в термодинамике, поскольку они удобны для наглядного представления необратимости процессов. На такой диаграмме, в частности, можно построить линии, соответствующие постоянному объему, постоянному давлению и постоянной энтальпии. Вертикальные линии на диаграмме T–s представляют процессы изоэнтропийного (происходящего без изменения энтропии) расширения или сжатия, а горизонтальные линии внутри колоколообразной кривой представляют изотермические процессы изменения фазового состояния (испарения или конденсации).
- Предисловие
- 1. Статус настоящего документа
- 2. Мандат на подготовку настоящего документа
- 3. Значимые нормативно-правовые положения Директивы КПКЗ и определение НДТ
- Область применения
- 1.2. Понятие энергии и законы термодинамики
- 1.2.1. Энергия, теплота, мощность и работа
- 1.2.2.4. Диаграммы свойств
- 1.3.5. Значимость систем и границ систем
- 1.3.6. Другие используемые термины
- 1.3.6.1. Первичная энергия, вторичная энергия и конечная энергия
- 1.3.6.2. Теплота сгорания топлива и КПД
- 1.5.2. Другие существенные вопросы, заслуживающие рассмотрения на уровне установки
- 1.5.2.1. Документирование используемых подходов к отчетности
- 1.5.2.2. Внутреннее производство и потребление энергии
- 1.5.2.3. Утилизация энергии отходов и газа, сжигаемого в факелах
- 1.5.2.6. Интеграция энергосистем
- 1.5.2.7. Неэффективное использование энергии из соображений устойчивого развития и/или повышения энергоэффективности предприятия в целом
- 2.2. Планирование и определение целей и задач
- 2.2.1. Постоянное улучшение экологической результативности и вопросы воздействия на различные компоненты окружающей среды
- 2.3. Энергоэффективное проектирование (ЭЭП)
- 2.3.1. Выбор технологии производственного процесса
- 2.6. Поддержание и повышение квалификации персонала
- 2.7. Информационный обмен
- 2.8. Эффективный контроль технологических процессов
- 2.8.1. Автоматизированные системы управления технологическими процессами
- 2.9. Техническое обслуживание
- 2.10.2. Оценки и расчеты
- 2.15. Энергетические модели
- 2.15.1. Энергетические модели, базы данных и балансы
- 2.16. Сравнительный анализ
- 3. Технологии, которые следует рассматривать для обеспечения энергоэффективности на уровне энергопотребляющих систем, процессов и видов деятельности
- 3.1. Сжигание
- 3.1.1. Снижение температуры дымовых газов
- 3.1.2. Рекуперативные и регенеративные горелки
- 3.1.5. Выбор топлива
- 3.1.8. Сокращение потерь тепла через отверстия печей
- 3.2. Паровые системы
- 3.2.1. Общие свойства пара
- 3.2.4. Методы эксплуатации и управления технологическим процессом
- 3.2.8. Оптимизация расхода пара в деаэраторе
- 3.2.11. Теплоизоляция паропроводов и конденсатопроводов
- 3.2.12. Реализация программы контроля состояния конденсатоотводчиков и их ремонта
- 3.2.13. Сбор и возврат конденсата в котел
- 3.3.1. Теплообменники
- 3.3.2. Тепловые насосы (в т.ч. механическая рекомпрессия пара)
- 3.4. Когенерация
- 3.4.1. Различные методы когенерации
- 3.4.2. Тригенерация
- 3.5. Электроснабжение
- 3.5.1. Компенсация реактивной мощности
- 3.5.3. Оптимизация систем электроснабжения
- 3.6.1. Энергоэффективные двигатели
- 3.7. Системы сжатого воздуха
- 3.7.1. Оптимизация общего устройства системы
- 3.7.3. Высокоэффективные электродвигатели
- 3.7.5. Утилизация тепла
- 3.7.7. Техническое обслуживание фильтров
- 3.7.10. Создание запаса сжатого воздуха вблизи потребителей с существенно варьирующим уровнем потребления
- 3.8. Насосные системы
- 3.9.2.2. Повышение эффективности существующей вентиляционной системы
- 3.10. Освещение
- 3.11. Процессы сушки, сепарации и концентрирования
- 3.11.2. Механические процессы
- 3.11.3. Методы термической сушки
- 3.11.3.1. Расчет энергозатрат и КПД
- 3.11.3.4. Перегретый пар
- 3.11.4. Радиационная сушка
- 4. Наилучшие доступные технологии
- 4.1. Введение
- 4.2. Наилучшие доступные технологии обеспечения энергоэффективности на уровне установки
- 4.2.1. Менеджмент энергоэффективности
- 4.2.3. Энергоэффективное проектирование (ЭЭП)
- 4.2.4. Повышение степени интеграции технологических процессов
- 4.2.9. Мониоринг и измерения
- 4.3. Наилучшие доступные технологии обеспечения энергоэффективности энергопотребляющих систем, технологических процессов, видов деятельности и оборудования
- 4.3.1. Сжигание
- 4.3.10. Освещение
- 4.3.11. Процессы сушки, сепарации и концентрирования
- 5.2. Сжатый воздух как средство хранения энергии
- 6. Заключительные замечания
- 6.1. Временные рамки и основные этапы подготовки настоящего документа
- 6.2. Источники информации
- 6.3. Степень консенсуса
- 6.4. Пробелы и дублирование информации. Рекомендации по дальнейшему сбору информации и исследованиям
- 6.4.1. Пробелы и дублирование информации
- 6.5. Пересмотр настоящего документа
- Источники
- Глоссарий
- 7. Приложения
- 7.1. Энергия и законы термодинамики
- 7.1.1.Общие принципы
- 7.1.1.1.Описание систем и процессов
- 7.1.2. Первый и второй законы термодинамики
- 7.1.2.1. Первый закон термодинамики: баланс энергии
- 7.1.3. Диаграммы свойств, таблицы свойств, базы данных и программы
- 7.1.3.1. Диаграммы свойств
- 7.1.3.3. Источники неэффективности
- 7.1.4. Использованные обозначения
- 7.2. Примеры термодинамической необратимости
- 7.2.1. Пример 1. Дросселирование
- 7.6. Пример подхода к поступательному развитию инициатив в сфере энергоэффективности: «совершенство в производственной деятельности»
- 7.7. Мониторинг и измерения
- 7.7.1. Количественные измерения
- 7.7.2. Оптимизация использования энергоресурсов
- 7.9. Сравнительный анализ
- 7.9.1. Нефтеперерабатывающие заводы
- 7.9.6. Распределение энергозатрат и выбросов CO2 между различными видами продукции в сложном последовательном процессе
- 7.10. Примеры к главе 3
- 7.10.1. Паровые системы
- 7.10.2. Утилизация отходящего тепла
- 7.11. Мероприятия на стороне потребителя
- 7.13. Сайт Европейской комиссии, посвященный вопросам энергоэффективности и Национальные планы действий государств-членов
- 7.15. Оптимизация транспортных систем
- 7.15.3. Улучшение упаковки с целью оптимизации использования транспорта