7.2.1. Пример 1. Дросселирование
Дросселирование широко применяется в промышленности для регулирования давления; как правило, оно осуществляется при помощи клапанов. Поскольку процесс дросселирования является изоэнтальпийным (т.е. не сопровождается изменением энтальпии), потери энергии в этом процессе отсутствуют, и, согласно первому закону термодинамики, КПД этого процесса является максимально возможным.
Тем не менее, в процессе дросселирования имеет место типичная механическая необратимость. Снижение давления сопровождается повышением энтропии рабочего тела без какого-либо дополнительного полезного результата. Как следствие, происходит потеря эксергии, и способность рабочего тела к совершению работы (например, в турбине) снижается.
Поэтому, если условия технологического процесса диктуют необходимость снижения давления рабочего тела, желательно использовать для этого изоэнтропийный процесс расширения, который сопровождался бы совершением полезной работы (например, в турбодетандере). Если это невозможно, следует поддерживать рабочее давление в системе как можно более высоким, избегая его искусственного снижения. Это позволит не только избежать потерь эксергии при дросселировании, но и сократить потребность в дополнительных насосах или компрессорах для обеспечения транспортировки рабочего тела (и соответствующих затратах энергии).
Распространенной практикой на промышленных предприятиях является поддержание на входе турбины постоянного давления, соответствующего номинальному уровню, вне зависимости от колебаний давления подаваемого рабочего тела. Как правило, такая практика требует интенсивного использования впускных клапанов для регулирования давления, что не всегда является рациональным. С точки зрения второго закона термодинамики, более эффективной является эксплуатация турбины при давлении системы («плавающем давлении») и полностью открытыми впускными клапанами.
Общей рекомендацией является использование настолько больших клапанов, насколько это возможно. В этом случае удовлетворительное дросселирование может быть достигнуто при перепаде давления 5–10% при максимальном расходе рабочего тела, в отличие от перепада 25– 50% при использовании традиционных клапанов, размер которых является слишком малым. Размеры насосов, обеспечивающих транспортировку рабочего тела, также должны быть подобраны с учетом конкретных условий и диапазона их возможных вариаций.
Наконец, следует отметить, что трубопроводы также оказывают дросселирующее действие, поскольку давление рабочего тела постепенно снижается по мере движения по трубопроводу. Поэтому грамотное проектирование трубопровода, предусматривающее минимальное количество препятствий для движения рабочего тела (клапанов, колен, изгибов), а также выбор оптимального материала, позволяющего уменьшить трение, позволяют свести к минимуму потери эксергии при транспортировке.
В любом случае, необходим анализ эксергии, охватывающий все основные типы энергоресурсов, используемых на предприятия, поскольку случаи необратимости затруднительно или невозможно выявить, анализируя ситуацию с токи зрения первого закона термодинамики.
Численный пример
Для питания турбонасоса на тепловой электростанции отбирается пар от турбины высокого давления (P = 40 кг/см2, t = 350 ºC).
Поскольку для работы турбонасоса требуется входное давление 8 кг/см2, необходимо дросселирование пара, поступающего от турбины высокого давления (см. рис. 7.2). Процесс схематически представлен в координатах T–s и h–s на рис. 7.3. Ниже приведен расчет эксергии на входе и выходе расширительного клапана; предполагается, что расход пара составляет 45 т/ч.
- Предисловие
- 1. Статус настоящего документа
- 2. Мандат на подготовку настоящего документа
- 3. Значимые нормативно-правовые положения Директивы КПКЗ и определение НДТ
- Область применения
- 1.2. Понятие энергии и законы термодинамики
- 1.2.1. Энергия, теплота, мощность и работа
- 1.2.2.4. Диаграммы свойств
- 1.3.5. Значимость систем и границ систем
- 1.3.6. Другие используемые термины
- 1.3.6.1. Первичная энергия, вторичная энергия и конечная энергия
- 1.3.6.2. Теплота сгорания топлива и КПД
- 1.5.2. Другие существенные вопросы, заслуживающие рассмотрения на уровне установки
- 1.5.2.1. Документирование используемых подходов к отчетности
- 1.5.2.2. Внутреннее производство и потребление энергии
- 1.5.2.3. Утилизация энергии отходов и газа, сжигаемого в факелах
- 1.5.2.6. Интеграция энергосистем
- 1.5.2.7. Неэффективное использование энергии из соображений устойчивого развития и/или повышения энергоэффективности предприятия в целом
- 2.2. Планирование и определение целей и задач
- 2.2.1. Постоянное улучшение экологической результативности и вопросы воздействия на различные компоненты окружающей среды
- 2.3. Энергоэффективное проектирование (ЭЭП)
- 2.3.1. Выбор технологии производственного процесса
- 2.6. Поддержание и повышение квалификации персонала
- 2.7. Информационный обмен
- 2.8. Эффективный контроль технологических процессов
- 2.8.1. Автоматизированные системы управления технологическими процессами
- 2.9. Техническое обслуживание
- 2.10.2. Оценки и расчеты
- 2.15. Энергетические модели
- 2.15.1. Энергетические модели, базы данных и балансы
- 2.16. Сравнительный анализ
- 3. Технологии, которые следует рассматривать для обеспечения энергоэффективности на уровне энергопотребляющих систем, процессов и видов деятельности
- 3.1. Сжигание
- 3.1.1. Снижение температуры дымовых газов
- 3.1.2. Рекуперативные и регенеративные горелки
- 3.1.5. Выбор топлива
- 3.1.8. Сокращение потерь тепла через отверстия печей
- 3.2. Паровые системы
- 3.2.1. Общие свойства пара
- 3.2.4. Методы эксплуатации и управления технологическим процессом
- 3.2.8. Оптимизация расхода пара в деаэраторе
- 3.2.11. Теплоизоляция паропроводов и конденсатопроводов
- 3.2.12. Реализация программы контроля состояния конденсатоотводчиков и их ремонта
- 3.2.13. Сбор и возврат конденсата в котел
- 3.3.1. Теплообменники
- 3.3.2. Тепловые насосы (в т.ч. механическая рекомпрессия пара)
- 3.4. Когенерация
- 3.4.1. Различные методы когенерации
- 3.4.2. Тригенерация
- 3.5. Электроснабжение
- 3.5.1. Компенсация реактивной мощности
- 3.5.3. Оптимизация систем электроснабжения
- 3.6.1. Энергоэффективные двигатели
- 3.7. Системы сжатого воздуха
- 3.7.1. Оптимизация общего устройства системы
- 3.7.3. Высокоэффективные электродвигатели
- 3.7.5. Утилизация тепла
- 3.7.7. Техническое обслуживание фильтров
- 3.7.10. Создание запаса сжатого воздуха вблизи потребителей с существенно варьирующим уровнем потребления
- 3.8. Насосные системы
- 3.9.2.2. Повышение эффективности существующей вентиляционной системы
- 3.10. Освещение
- 3.11. Процессы сушки, сепарации и концентрирования
- 3.11.2. Механические процессы
- 3.11.3. Методы термической сушки
- 3.11.3.1. Расчет энергозатрат и КПД
- 3.11.3.4. Перегретый пар
- 3.11.4. Радиационная сушка
- 4. Наилучшие доступные технологии
- 4.1. Введение
- 4.2. Наилучшие доступные технологии обеспечения энергоэффективности на уровне установки
- 4.2.1. Менеджмент энергоэффективности
- 4.2.3. Энергоэффективное проектирование (ЭЭП)
- 4.2.4. Повышение степени интеграции технологических процессов
- 4.2.9. Мониоринг и измерения
- 4.3. Наилучшие доступные технологии обеспечения энергоэффективности энергопотребляющих систем, технологических процессов, видов деятельности и оборудования
- 4.3.1. Сжигание
- 4.3.10. Освещение
- 4.3.11. Процессы сушки, сепарации и концентрирования
- 5.2. Сжатый воздух как средство хранения энергии
- 6. Заключительные замечания
- 6.1. Временные рамки и основные этапы подготовки настоящего документа
- 6.2. Источники информации
- 6.3. Степень консенсуса
- 6.4. Пробелы и дублирование информации. Рекомендации по дальнейшему сбору информации и исследованиям
- 6.4.1. Пробелы и дублирование информации
- 6.5. Пересмотр настоящего документа
- Источники
- Глоссарий
- 7. Приложения
- 7.1. Энергия и законы термодинамики
- 7.1.1.Общие принципы
- 7.1.1.1.Описание систем и процессов
- 7.1.2. Первый и второй законы термодинамики
- 7.1.2.1. Первый закон термодинамики: баланс энергии
- 7.1.3. Диаграммы свойств, таблицы свойств, базы данных и программы
- 7.1.3.1. Диаграммы свойств
- 7.1.3.3. Источники неэффективности
- 7.1.4. Использованные обозначения
- 7.2. Примеры термодинамической необратимости
- 7.2.1. Пример 1. Дросселирование
- 7.6. Пример подхода к поступательному развитию инициатив в сфере энергоэффективности: «совершенство в производственной деятельности»
- 7.7. Мониторинг и измерения
- 7.7.1. Количественные измерения
- 7.7.2. Оптимизация использования энергоресурсов
- 7.9. Сравнительный анализ
- 7.9.1. Нефтеперерабатывающие заводы
- 7.9.6. Распределение энергозатрат и выбросов CO2 между различными видами продукции в сложном последовательном процессе
- 7.10. Примеры к главе 3
- 7.10.1. Паровые системы
- 7.10.2. Утилизация отходящего тепла
- 7.11. Мероприятия на стороне потребителя
- 7.13. Сайт Европейской комиссии, посвященный вопросам энергоэффективности и Национальные планы действий государств-членов
- 7.15. Оптимизация транспортных систем
- 7.15.3. Улучшение упаковки с целью оптимизации использования транспорта