13.3. Неуглеродная шарообразная молекула
Возникает вполне резонный вопрос – возможно ли существование шарообразных молекул из других неуглеродных атомов, например, кремния или азота? Работы последних лет убедительно показывают, что это возможно. Исследователям из Японии удалось создать корзинообразные структуры из кремния. Однако, в отличие от углерода, один кремний не может образовывать замкнутые структуры. Как было показано, кремний может формировать замкнутую структуру вокруг атома вольфрама в виде гексагональной клетки. Потенциальной областью применения таких структур являются компоненты квантовых компьютеров, химические катализаторы, сверхпроводники нового поколения.
К настоящему моменту предсказано множество стабильных замкнутых структур из других типов атомов помимо углерода. Например, методом плотности функционала показано, что кластер N20 должен быть стабильным и иметь додекаэдрическую структуру. Данное вещество должно быть очень мощным взрывчатым веществом – примерно в три раза мощнее наиболее энергоемких современных обычных взрывчатых материалов. Однако, как предсказывают технологи, реальный синтез N20 может оказаться крайне сложным.
- 654100 – Электроника и микроэлектроника
- Оглавление
- Часть первая. Микроэлектроника Глава 1. Общая характеристика микроэлектроники. Принципы функционирования элементов
- 1.1. Основные определения
- 1.2. Классификация изделий микроэлектроники
- 1.3. Физические явления, используемые в интегральной микроэлектронике
- 1.4. Процессы и явления, определяющие функционирование интегральных схем (ис)
- 1.5. Контактные явления в микроэлектронных структурах
- 1.6. Поверхностные явления в полупроводниках
- 1.7. Механизмы переноса носителей заряда
- Глава 2. Базовые физико-химические методы создания микроэлектронных структур
- 2.1. Очистка поверхности пластин для ис
- 2.2. Получение полупроводниковых монокристаллов методом вытягивания из расплава
- 2.3. Термическое окисление
- 2.4. Эпитаксия
- 2.5. Фотолитография
- 2.6. Диффузия
- 2.7. Ионная имплантация (ионное легирование)
- 2.8. Металлизация
- Глава 3.Типы подложек интегральных схем, их основные характеристики и процессы изготовления подложек
- 3.1. Изготовление подложек ис
- 3.3. Оптический метод ориентации полупроводниковых пластин
- 3.4. Шлифовка и полировка пластин
- 3.5. Строение нарушенного слоя после механической обработки пластины
- Глава 4. Технология химической обработки подложек для интегральных микросхем
- 4.1. Механизм химической обработки кремниевых пластин
- 4.2. Термохимическое (газовое) травление
- 4.3. Ионно-плазменное травление
- Глава 5. Диэлектрические пленки в ис. Методы их получения. Технологии изготовления гибридных ис
- 5.1. Конструктивно-технологические функции диэлектрических плёнок
- 5.2. Формирование плёнок SiO2термическим окислением кремния
- 5.3. Методы получения диэлектрических пленок в технологии гибридных ис
- 5.3.1. Термовакуумное реактивное испарение
- 5.3.2. Анодное окисление
- 5.3.3. Ионно-плазменное окисление
- Глава 6. Ионное легирование полупроводников
- 6. 1. Общие принципы процесса ионного легирования
- Для количественной оценки ф согласно (6.1) необходимо знать потенциал φ(u) взаимодействия частиц. В простейшем случае он равен кулоновскому потенциалу. Однако в реальном случае
- 6.2. Отжиг дефектов и электрические свойства слоёв
- 6.3. Импульсный лазерный отжиг
- 6.4. Маскирование в процессах ионного легирования
- 6.5. Маскирование фоторезистами
- 6.6. Маскирование пленками металлов
- Глава 7. Элионные методы литографических процессов
- 7.1. Электронно-лучевая литография
- 7.2. Рентгенолучевая литография (рлл)
- 7.2.1. Особенности экспонирования в рлл
- 7.2.2. Технология рентгенолитографических процессов
- 7.2.3. Выбор резистов для рлл
- Глава 8.Пленки в технологии ис, микросборок и коммутационных элементов
- 8.1. Металлические пленки для ис
- 8.2. Технология коммутационных элементов ис
- 8.3. Технология пленочных резисторов
- 8.4. Чистый металл и сплавы
- 8.5. Керметы (микрокомпозиционные пленки)
- 8.6. Изготовление тонкопленочных конденсаторов
- 8.7. Монооксид кремнияSiO
- 8.8. Пятиокись тантала Та2о5
- 8.9. Оксид алюминия Al2o3 и диоксид кремнияSiО2
- 8.10. Диоксид титана ТiО2
- Глава 9.Монтаж кристаллов ис на носителях. Типы носителей. Особенности сборки ис в корпуса
- 9.1. Конструктивно-технологические варианты монтажа
- 9.2. Изготовление ленточных носителей
- 9.3. Получение внутренних выводов на кристаллах ис
- 9.4. Монтаж кристалла ис на гибкую ленту
- 9.5. Монтаж гибридных ис и микросборок
- 9.6. Особенности сборки сверхбыстродействующих ис и процессоров
- Глава 10. Технология герметизации ис и мп
- 10.1. Пассивирующие и защитные покрытия ис
- 10.2. Принципы герметизации ис в корпусах
- 10.3. Герметизация ис в металлических корпусах
- Часть вторая наноэлектроника
- Глава 11. Теоретические основы наноэлектроники. Одноэлектронные приборы
- 11.1. Проблемы наноэлектроники (одноэлектроники)
- 11.2. Базовая теория кулоновской блокады
- 11.3. "Кулоновская лестница"
- 11.5. Квантовые размерные эффекты
- 11.6. Классификация одноэлектронных приборов
- 11.7. Одноэлектронный прибор на основе сканирующего туннельного микроскопа
- 11.8. Субмикронный вертикальный одноэлектронный транзистор (транзистор Остина)
- 11.9. Применение одноэлектронных приборов
- Глава 12. Наночастицы и нанокластеры
- 12.1. Свойства наночастиц и их характеристики
- 12.2. Теоретическое моделирование наночастиц (модель ″желе″)
- 12.3. Геометрическая и электронная структуры нанокластеров
- 12.4. Реакционная способность наночастиц
- 12.5. Флуктуационные наноструктуры
- 12.6. Магнитные кластеры
- 12.7. Переход от макро- к нано-
- 12.8. Полупроводниковые наночастицы
- 12.9. Кулоновский взрыв
- 12.10. Молекулярные кластеры
- 12.11. Методы синтеза наночастиц
- 12.12. Химические методы синтеза наночастиц
- 12.13. Термолиз
- 12.14. Импульсные лазерные методы
- Глава 13.Углеродные наноструктуры
- 13. 1. Природа углеродной связи
- 13.2. Малые углеродные кластеры – с60.
- 13.3. Неуглеродная шарообразная молекула
- 13.4. Углеродные нанотрубки
- 13.4.1. Методы получения нанотрубок
- 13.4.2. Электрические свойства нанотрубок
- 13.4.3. Колебательные свойства нанотрубок
- 13.4.4. Механические свойства нанотрубок
- 13.5. Применение углеродных нанотрубок
- 13.5.1. Полевая эмиссия и экранирование
- 13.5.2. Информационные технологии, электроника
- 13.5.3. Топливные элементы
- 13.5.4. Химические сенсоры
- 13.5.5. Катализ
- 13.5.6. Механическое упрочнение материалов
- Глава 14.Объемные наноструктурированные материалы: разупорядоченные и кристаллизованные
- 14.1. Методы синтеза разупорядоченных структур
- 14.2. Механизмы разрушения традиционных материалов
- 14.3. Механические свойства наноструктурированных материалов
- 14.4. Многослойные наноструктурированные материалы
- 14.5. Электрические свойства наноструктурированных материалов
- 14.6. Нанокластеры в оптическом материаловедении
- 14.7. Пористый кремний
- 14.8. Упорядоченные наноструктуры
- 14.8.1. Упорядоченные структуры в цеолитах
- 14.8.2. Кристаллы из металлических наночастиц
- 14.8.3. Нанокристаллы для фотоники
- Глава 15.Наноприборы и наномашины
- 15.1. Микроэлектромеханические устройства (mems)
- 15.2. Наноэлектромеханические системы (nems)
- 15.3. Наноактуаторы
- 15.4. Молекулярные и супрамолекулярные переключатели
- Библиографический список Основной
- Физические основы технологии микро- и наноэлектроники
- 620002, Екатеринбург, Мира, 19
- 620002, Екатеринбург, Мира, 19