12.3 Ременные передачи
Ременная передача (рис. 12.2, а) состоит из ведущего и ведомого шкивов, соединенных ремнем (ремнями), надетым на шкивы с натяжением. Вращение ведущего шкива передается к ведомому благодаря трению, развиваемому между приводным ремнем и шкивами или зацеплением (зубчато-ременная передача).
Преимущества: возможность осуществления передачи между валами, расположенными на значительном расстоянии; плавность и бесшумность работы; защита от перегрузок связана со способностью ремня передать лишь определенную нагрузку, свыше которой происходит буксование (скольжение) ремня по шкиву; небольшая стоимость и легкость ухода за передачей.
Недостатки: большие габаритные размеры; непостоянство передаточного отношения передачи из-за проскальзывания ремня; повышенные силы давления на валы и подшипники, так как суммарное натяжение ветвей ремня значительно больше окружной силы передачи; малая долговечность ремней и необходимость предохранения их от попадания масла; необходимость устройств для натяжения ремней.
В большинстве случаев ременные передачи применяют для передачи мощностей 0,3...50 кВт: для плоскоременной передачи КПД = 0,96,а для клиноременной — КПД = 0,95.
По форме поперечного сечения приводные ремни передач трением делятся на плоские (рис. 12.2, б), клиновые (рис. 12.2, в), поликлиновые (рис. 12.2, г), круглые (рис. 12.2, д) и др.
Соответственно по форме поперечного сечения ремня различают плоскоременные, клиноременные, поликлиновые и круглоременные передачи.
Материалы и конструкции ремней. Приводной ремень должен обладать определенной тяговой способностью (способностью передавать заданную нагрузку без буксования) и потребной долговечностью. Тяговая способность ремня обеспечивается надежным сцеплением его со шкивами, что определяется высоким коэффициентом трения между ними. Долговечность ремня зависит от возникающих в нем напряжений изгиба и частоты циклов нагружений. По материалу и конструкции различают несколько типов ремней.
Плоские ремни. К стандартным плоским ремням относятся: прорезиненные тканевые, кожаные, хлопчатобумажные цельно-тканые и шерстяные. Концы плоских ремней можно соединять (сшивкой, склеиванием, металлическими скрепками), а в быстроходных передачах используются бесшовные (бесконечные).
Клиновые ремни. Их изготовляют трех типов: нормального сечения, узкие и широкие для вариаторов. Ремни нормального сечения основные в общем машиностроении. В соответствии с ГОСТ эти ремни изготовляют семи различных по размерам сечений: О, А, Б, В, Г, Д и Е. Допускаемая максимальная скорость для профилей О, А, Б, В до 25 м/с, для Г, Д и Е до 30 м/с. Сечения ремней увеличиваются от О к Е. Клиновые ремни получили наиболее широкое применение в промышленности.
Поликлиновые ремни. По конструкции они подобны клиновым. В тонкой плоской части их (см. рис. 12.2 и рис. 12.3, а) помещаются высокопрочный шнуровой корд из вискозы, стекловолокна или лавсана и несколько слоев диагонально расположенной ткани, придающей ремню большую поперечную жесткость. Поликлиновые передачи — самые компактные из всех ременных передач и могут работать со скоростью V < 40 м/с.
Зубчатые ремни (рис. 12.3, б). Они сочетают преимущества плоских ремней и зубчатых зацеплений. На рабочей поверхности ремней делают выступы (зубья), которые входят в зацепление с выступами (зубьями) на шкивах. Зубчатые ремни устанавливают без предварительного натяжения. Они работают бесшумно без проскальзывания и имеют постоянное передаточное отношение. По сравнению с обыкновенной ременной передачей трением зубчато-ременные значительно компактнее и имеют более высокий КПД.
Материалы и конструкция шкивов. Шкивы ременных передач изготовляют из чугуна, стали, легких сплавов, пластмасс и дерева. Наружная часть шкива, на которой устанавливают ремень (ремни), называется ободом, а центральная часть, насаживаемая на вал, называется ступицей. Обод со ступицей соединяется диском или спицами.
- 10.2 Стандартизация и унификация
- 10.3 Прочность и жесткость
- 10.4 Точность взаимного положения деталей
- 10.5 Другие методы и принципы конструирования
- 9.2 Трение и изнашивание
- 1.2.2 Стали
- 11. 3.2 Алюминий и его сплавы
- 11.3.3 Сплавы титана и магния, баббиты
- 11.4 Пластмассы
- 11. 5 Смазочные материалы
- 12.2.3 Расчет фрикционных передач
- 12.3 Ременные передачи
- 12.3.1 Кинематика, геометрия и силы в ременных передачах
- 12.3.2 Порядок расчета
- 12.4 Зубчатые механизмы. Прямозубые цилиндрические передачи
- 12.4.1 Параметры цилиндрических прямозубых колес
- 12.4.2 Конструкции и материалы зубчатых колес
- 12.4.3 Виды повреждений зубьев
- 12.4.4 Расчетная нагрузка, действующая в зацеплении прямозубой цилиндрической передачи
- 12.4.5 Проверочный и проектировочный расчет прямозубой цилиндрической передачи на сопротивление усталости при изгибе
- 12.5 Особенности цилиндрических косозубых передач
- 12.5.1 Силы, действующие в зацеплении косозубой цилиндрической передачи
- 12.5.2 Расчет косозубой цилиндрической передачи на прочность
- 12.6 Конические зубчатые передачи
- 12.6.1 Силы, действующие в зацеплении конической передачи
- 12.6.2 Расчет конической передачи на прочность
- 12.7 Передачи с круговинтовым зацеплением Новикова
- 12.8.2 Волновые зубчатые передачи
- 12.9 Червячные передачи
- 12.10 Механизмы винт-гайка
- 12.11 Цепные передачи
- 12.11.1 Конструкции приводных цепей
- 12.12 Рычажные передачи
- 13.2 Расчеты валов и осей
- 14.2 Подшипники скольжения
- 14.3 Подшипники качения
- 15.2 Постоянные муфты
- 15.3 Управляемые муфты
- 15.4 Самоуправляемые муфты
- 16 Корпуса
- 17.2 Винтовые пружины
- 17.3 Плоские пружины
- 17.4 Мембраны, сильфоны и трубчатые пружины
- 17.5 Амортизаторы
- 18.1.1 Резьбовые соединения
- 18.1.2 Штифтовые соединения
- 18.1.3 Шпоночные соединения
- 18.1.4 Шлицевые соединения
- 18.2.2 Соединения пайкой
- 18.2.3 Заклепочные соединения
- 18.2.4 Клеевые соединения
- 18.2.5 Соединения заформовкой и запрессовкой
- 19.2 Кинетическая энергия
- 19.3 Обобщенные силы механизмов
- 19.4 Метод приведения в динамике механизмов