2. Основы технологии формообразования отливок из черных и цветных сплавов.
Из стали изготовляют отливки массой от нескольких граммов до десятков тонн; конфигурация их м.б. очень сложной. Сталь обладает высокой прочностью и пластичностью, выдерживает значительные напряжения при переменной и ударной нагрузках. Легированные и специальные виды обладают хорошими механическими свойствами при повышенных температурах, кислотостойкостью, окалиностойкостью, износостойкостью и другими важными эксплуатационными свойствами. В связи с развитием новой техники применение таких отливок постоянно возрастает.
По способу получения для фасонных отливок разделяют на мартеновскую, бессемеровскую, электросталь (основную и кислую). Мартеновский вид металла чаще всего применяют для крупных отливок, так как она обладает хорошими свойствами..
В производственных цехах применяют мартеновские печи, дуговые и индукционные электропечи, малые бессемеровские конверторы. В мартеновских печах применяют преимущественно для крупных отливок. Преимущества: возможностью использования большого количества лома и передела исходных материалов разнообразного химического состава; высокое качество и возможность выплавки металла многих марок; относительно небольшой стоимостью. Емкость их составляет 5-500 тонн.
Отливки из сплавов цветных металлов должны иметь определенный химический состав, заданный уровень механических свойств, необходимые размерную точность и чистоту поверхности без внешних и внутренних дефектов. В отливках не допускаются трещины, сквозные раковины и рыхлоты. Поверхности, являющиеся базами для механической обработки, не должны иметь наплывов и повреждений. Допустимые дефекты, их количество, способы обнаружения и методы исправления регламентируются отраслевыми стандартами (ОСТами) и техническими условиями.
Обрабатываемые поверхности отливок должны иметь припуск на механическую обработку. Минимальный припуск должен быть больше допуска. Величина припуска определяется габаритными размерами и классом точности отливок.
Чистота поверхности отливок должна соответствовать заданному классу шероховатости. Она зависит от способа изготовления отливок, применяемых материалов для изготовления форм, качества подготовки поверхности моделей, кокилей и пресс-форм. Для получения отливок, отвечающих перечисленным выше требованиям, применяют различные способы литья в разовые формы и формы многократного использования.
- 2. Основы технологии формообразования отливок из черных и цветных сплавов.
- 3. Основы технологии формообразования поковок, штамповок, листовых оболочек.
- 4. Выбор способа получения штамповок
- 5. Основы технологии формообразования сварных конструкций из различных сплавов. Понятие о технологичности заготовок.
- 6. Пайка материалов.
- 7. Основы технологии формообразования поверхностей деталей механической обработкой, электрофизическими и электрохимическими способами обработки.
- 8. Понятие о технологичности деталей.
- 1 Закономерности и связи, проявляющиеся в процессе проектирования и создания машин.
- Методы разработки технологического процесса изготовления машины.
- 3. Принципы построения производственного процесса изготовления машины.
- 4. Технология сборки.
- 5. Разработка технологического процесса изготовления деталей.
- 1.Основы проектирования механизмов. Стадии разработки.
- 2. Критерии работоспособности машин. Принцип расчёта деталей, подверженных износу.
- 3. Механические передачи
- 5. Подшипники качения и скольжения.
- Классификация по конструктивным признакам
- 6. Соединения деталей
- 7. Муфты механических приводов
- 1.Принципы технического регулирования.
- 2. Технические регламенты.
- 3. Стандартизация.
- 4. Подтверждение соответствия.
- 5. Государственный контроль (надзор) за соблюдением требований технических регламентов.
- 6.Метрология. Прямые и косвенные измерения.
- 2. Системы счисления. Представление чисел в позиционных и непозиционных системах
- 3. Системы счисления. Перевод чисел из одной системы счисления в другую.
- 4. Представление чисел в эвм.
- 5. Принципы организации вычислительного процесса. Алгоритм Фон-Неймана.
- 6. Принципы организации вычислительного процесса. Гарвардская архитектура эвм.
- 7 Архитектура и устройство базовой эвм.
- 8 Адресация оперативной памяти. Сегментные регистры.
- 9 Система команд процессора i32. Способы адресации.
- 10 Система команд процессора i32. Машинная обработка. Байт способа адресации.
- 11 Разветвляющий вычислительный процесс.
- 12 Циклический вычислительный процесс
- 13 Рекурсивный вычислительный процесс.
- 8 Функции процессора, памяти, устройств ввода-вывода. Функции процессора
- Методы адресации
- 11. Базовый функциональный блок микроконтроллера включает:
- 15. Модули последовательного ввода/вывода
- 20. Dsp/bios
- 21. Xdias
- 22. Программируемый логический контроллер
- 23. Языки программирования логических контроллеров
- 2.Биполярный транзистор.
- 3. Полевой транзистор
- 4. Управление силовыми транзисторами
- 5. Цепи формирования траектории рабочей точки транзистора
- 6. Цфтрт с рекуперацией энергии
- 7. Последовательное соединение приборов
- 8. Параллельное соединение приборов.
- 9. Защита силовых приборов от сверхтока.
- 10. Защита силовых приборов от перенапряжения.
- 11. Расчет драйвера igbt-транзистора.
- Трансформаторы.
- 2. Машины постоянного тока.
- 3. Асинхронные и синхронные машины.
- 4. Элементная база современных электронных устройств.
- 5. Усилители электрических сигналов.
- 6. Основы цифровой электроники.
- 4. Объектно-ориентированное программирование.
- Описание функций в теле класса
- Константные функции-члены