23. Языки программирования логических контроллеров
Для программирования ПЛК используются стандартизированные языки МЭК (IEC) стандарта IEC61131-3
Языки программирования для инженеров по автоматизации (графические)
LD — Язык релейных схем — самый распространённый язык для PLC
FBD — Язык функциональных блоков — 2-й по распространённости язык для PLC
SFC — Язык диаграмм состояний — используется для программирования автоматов
CFC — Не сертифицирован IEC61131-3, дальнейшее развитие FBD
Языки для программистов ПЛК (текстовые)
IL — Ассемблер
ST — Паскале-подобный язык
Структурно в IEC61131-3 среда исполнения представляет собой набор ресурсов (в большинстве случаев это и есть ПЛК, хотя некоторые мощные компьютеры под управлением многозадачных ОС представляют возможность запустить несколько программ типа softPLC и имитировать на одном ЦП несколько ресурсов). Ресурс предоставляет возможность исполнять задачи. Задачи представляют собой набор программ. Задачи могут вызываться циклически, по событию, с максимальной частотой.
Программа — это один из типов программных модулей POU. Модули (Pou) могут быть типа программа, функциональный блок и функция.
В некоторых случаях для программирования ПЛК используются нестандартные языки, например:
Блок-схемы алгоритмов
Си-ориентированная среда разработки программ для ПЛК.
HiGraph 7 — язык управления на основе графа состояний системы.
СУУ. 1.Приборы силовой электроники.
Приборы силовой электроники делятся на:
-полевые транзисторы MOSFET
-биполярные транзисторы и их модернизируемый вариант,коммутируемые по затвору,запираемые тиристоры
-биполярные транзисторы с изолированным затвором(малая мощность управления и малые коммутационные потери,низкое прямое падение напряжения)
Устройства и особенности работы биполярных транзисторов с изолированным затвором.IGBT-полностью управляемый полупроводниковый прибор,в основе которого лежит трехслойная труктура.
Состоит из 2-х транзисттров-полевой и биполярный.Сочетание 2-х приборов в одной структуре позволило объединить достоинства высокой токовой нагрузки и малым сопротивлением.Для IGBT с U=600...1200B в в полностью в включенном состоянии прямое падение напряжения так же как и для биполярных транзисторов находится в интервале 1,5-3В.Это значительное падение в отличии от MOSFET. MOSFET имеют более низкое значение напряжение во включенном состоянии и остаются непревзойденными в этом отношении.По быстродействию IGBT уступают MOSFET,но значительно превосходят биполярные.Область безопасной работы IGBT позволяет обеспечить его безопасную работу без применения дополнительных цепей формирования подключения при частоте 10-20 Гц,для модуля в несколько сотен ампер,таким качеством не обладают БТ,соединенные по схеме Дарлинтона. Ток управления IGBT мал,поэтому цепь управления –драйвер..В IGBT предусматривается система управления ШИМ.
- 2. Основы технологии формообразования отливок из черных и цветных сплавов.
- 3. Основы технологии формообразования поковок, штамповок, листовых оболочек.
- 4. Выбор способа получения штамповок
- 5. Основы технологии формообразования сварных конструкций из различных сплавов. Понятие о технологичности заготовок.
- 6. Пайка материалов.
- 7. Основы технологии формообразования поверхностей деталей механической обработкой, электрофизическими и электрохимическими способами обработки.
- 8. Понятие о технологичности деталей.
- 1 Закономерности и связи, проявляющиеся в процессе проектирования и создания машин.
- Методы разработки технологического процесса изготовления машины.
- 3. Принципы построения производственного процесса изготовления машины.
- 4. Технология сборки.
- 5. Разработка технологического процесса изготовления деталей.
- 1.Основы проектирования механизмов. Стадии разработки.
- 2. Критерии работоспособности машин. Принцип расчёта деталей, подверженных износу.
- 3. Механические передачи
- 5. Подшипники качения и скольжения.
- Классификация по конструктивным признакам
- 6. Соединения деталей
- 7. Муфты механических приводов
- 1.Принципы технического регулирования.
- 2. Технические регламенты.
- 3. Стандартизация.
- 4. Подтверждение соответствия.
- 5. Государственный контроль (надзор) за соблюдением требований технических регламентов.
- 6.Метрология. Прямые и косвенные измерения.
- 2. Системы счисления. Представление чисел в позиционных и непозиционных системах
- 3. Системы счисления. Перевод чисел из одной системы счисления в другую.
- 4. Представление чисел в эвм.
- 5. Принципы организации вычислительного процесса. Алгоритм Фон-Неймана.
- 6. Принципы организации вычислительного процесса. Гарвардская архитектура эвм.
- 7 Архитектура и устройство базовой эвм.
- 8 Адресация оперативной памяти. Сегментные регистры.
- 9 Система команд процессора i32. Способы адресации.
- 10 Система команд процессора i32. Машинная обработка. Байт способа адресации.
- 11 Разветвляющий вычислительный процесс.
- 12 Циклический вычислительный процесс
- 13 Рекурсивный вычислительный процесс.
- 8 Функции процессора, памяти, устройств ввода-вывода. Функции процессора
- Методы адресации
- 11. Базовый функциональный блок микроконтроллера включает:
- 15. Модули последовательного ввода/вывода
- 20. Dsp/bios
- 21. Xdias
- 22. Программируемый логический контроллер
- 23. Языки программирования логических контроллеров
- 2.Биполярный транзистор.
- 3. Полевой транзистор
- 4. Управление силовыми транзисторами
- 5. Цепи формирования траектории рабочей точки транзистора
- 6. Цфтрт с рекуперацией энергии
- 7. Последовательное соединение приборов
- 8. Параллельное соединение приборов.
- 9. Защита силовых приборов от сверхтока.
- 10. Защита силовых приборов от перенапряжения.
- 11. Расчет драйвера igbt-транзистора.
- Трансформаторы.
- 2. Машины постоянного тока.
- 3. Асинхронные и синхронные машины.
- 4. Элементная база современных электронных устройств.
- 5. Усилители электрических сигналов.
- 6. Основы цифровой электроники.
- 4. Объектно-ориентированное программирование.
- Описание функций в теле класса
- Константные функции-члены