2.3.1. Выбор технологии производственного процесса
Общая характеристика
Выбор энергоэффективной технологии для производственного процесса является важнейшим элементом энергоэффективного проектирования, заслуживающим особого внимания, поскольку возможность выбора технологии, как правило, представляется лишь при строительстве нового или масштабной модернизации существующего предприятия. Во многих случаях именно с выбором оптимальной технологии связан наибольший потенциал энергосбережения. При этом рекомендуемой практикой является учет научно-технических достижений в рассматриваемой области (см. п. 2.1(k)).
Поскольку сформулировать общие рекомендации по выбору технологий для всех секторов КПКЗ представляется затруднительным, ниже приводятся четыре примера предприятий различных отраслей (см. «Примеры»).
Всамом широком смысле, существуют следующие варианты замены технологии:
•переход к процессу, основанному на других технических принципах;
•замена производственного оборудования;
•переход к процессу, основанному на других технических принципах с одновременной заменой оборудования.
Производственный процесс может включать несколько этапов, использующих различные технологии, т.е. промежуточная продукция одного этапа может использоваться в качестве исходного материала для следующего. При строительстве или модернизации предприятия могут быть заменены один или несколько этапов. Как правило, наилучшие результаты достигаются при замене процесса в целом, что открывает возможности для рассмотрения новых способов получения конечной продукции.
Экологические преимущества
Зависят от конкретного процесса: замена технологии может привести к значительному энергосбережению, а также сокращению образования отходов и/или использования опасных веществ, снижению загрязнения окружающей среды, связанного с использованием растворителей и т.д. См. «Примеры».
Воздействие на различные компоненты окружающей среды
Зависит от конкретного процесса. См. «Примеры».
- Предисловие
- 1. Статус настоящего документа
- 2. Мандат на подготовку настоящего документа
- 3. Значимые нормативно-правовые положения Директивы КПКЗ и определение НДТ
- Область применения
- 1.2. Понятие энергии и законы термодинамики
- 1.2.1. Энергия, теплота, мощность и работа
- 1.2.2.4. Диаграммы свойств
- 1.3.5. Значимость систем и границ систем
- 1.3.6. Другие используемые термины
- 1.3.6.1. Первичная энергия, вторичная энергия и конечная энергия
- 1.3.6.2. Теплота сгорания топлива и КПД
- 1.5.2. Другие существенные вопросы, заслуживающие рассмотрения на уровне установки
- 1.5.2.1. Документирование используемых подходов к отчетности
- 1.5.2.2. Внутреннее производство и потребление энергии
- 1.5.2.3. Утилизация энергии отходов и газа, сжигаемого в факелах
- 1.5.2.6. Интеграция энергосистем
- 1.5.2.7. Неэффективное использование энергии из соображений устойчивого развития и/или повышения энергоэффективности предприятия в целом
- 2.2. Планирование и определение целей и задач
- 2.2.1. Постоянное улучшение экологической результативности и вопросы воздействия на различные компоненты окружающей среды
- 2.3. Энергоэффективное проектирование (ЭЭП)
- 2.3.1. Выбор технологии производственного процесса
- 2.6. Поддержание и повышение квалификации персонала
- 2.7. Информационный обмен
- 2.8. Эффективный контроль технологических процессов
- 2.8.1. Автоматизированные системы управления технологическими процессами
- 2.9. Техническое обслуживание
- 2.10.2. Оценки и расчеты
- 2.15. Энергетические модели
- 2.15.1. Энергетические модели, базы данных и балансы
- 2.16. Сравнительный анализ
- 3. Технологии, которые следует рассматривать для обеспечения энергоэффективности на уровне энергопотребляющих систем, процессов и видов деятельности
- 3.1. Сжигание
- 3.1.1. Снижение температуры дымовых газов
- 3.1.2. Рекуперативные и регенеративные горелки
- 3.1.5. Выбор топлива
- 3.1.8. Сокращение потерь тепла через отверстия печей
- 3.2. Паровые системы
- 3.2.1. Общие свойства пара
- 3.2.4. Методы эксплуатации и управления технологическим процессом
- 3.2.8. Оптимизация расхода пара в деаэраторе
- 3.2.11. Теплоизоляция паропроводов и конденсатопроводов
- 3.2.12. Реализация программы контроля состояния конденсатоотводчиков и их ремонта
- 3.2.13. Сбор и возврат конденсата в котел
- 3.3.1. Теплообменники
- 3.3.2. Тепловые насосы (в т.ч. механическая рекомпрессия пара)
- 3.4. Когенерация
- 3.4.1. Различные методы когенерации
- 3.4.2. Тригенерация
- 3.5. Электроснабжение
- 3.5.1. Компенсация реактивной мощности
- 3.5.3. Оптимизация систем электроснабжения
- 3.6.1. Энергоэффективные двигатели
- 3.7. Системы сжатого воздуха
- 3.7.1. Оптимизация общего устройства системы
- 3.7.3. Высокоэффективные электродвигатели
- 3.7.5. Утилизация тепла
- 3.7.7. Техническое обслуживание фильтров
- 3.7.10. Создание запаса сжатого воздуха вблизи потребителей с существенно варьирующим уровнем потребления
- 3.8. Насосные системы
- 3.9.2.2. Повышение эффективности существующей вентиляционной системы
- 3.10. Освещение
- 3.11. Процессы сушки, сепарации и концентрирования
- 3.11.2. Механические процессы
- 3.11.3. Методы термической сушки
- 3.11.3.1. Расчет энергозатрат и КПД
- 3.11.3.4. Перегретый пар
- 3.11.4. Радиационная сушка
- 4. Наилучшие доступные технологии
- 4.1. Введение
- 4.2. Наилучшие доступные технологии обеспечения энергоэффективности на уровне установки
- 4.2.1. Менеджмент энергоэффективности
- 4.2.3. Энергоэффективное проектирование (ЭЭП)
- 4.2.4. Повышение степени интеграции технологических процессов
- 4.2.9. Мониоринг и измерения
- 4.3. Наилучшие доступные технологии обеспечения энергоэффективности энергопотребляющих систем, технологических процессов, видов деятельности и оборудования
- 4.3.1. Сжигание
- 4.3.10. Освещение
- 4.3.11. Процессы сушки, сепарации и концентрирования
- 5.2. Сжатый воздух как средство хранения энергии
- 6. Заключительные замечания
- 6.1. Временные рамки и основные этапы подготовки настоящего документа
- 6.2. Источники информации
- 6.3. Степень консенсуса
- 6.4. Пробелы и дублирование информации. Рекомендации по дальнейшему сбору информации и исследованиям
- 6.4.1. Пробелы и дублирование информации
- 6.5. Пересмотр настоящего документа
- Источники
- Глоссарий
- 7. Приложения
- 7.1. Энергия и законы термодинамики
- 7.1.1.Общие принципы
- 7.1.1.1.Описание систем и процессов
- 7.1.2. Первый и второй законы термодинамики
- 7.1.2.1. Первый закон термодинамики: баланс энергии
- 7.1.3. Диаграммы свойств, таблицы свойств, базы данных и программы
- 7.1.3.1. Диаграммы свойств
- 7.1.3.3. Источники неэффективности
- 7.1.4. Использованные обозначения
- 7.2. Примеры термодинамической необратимости
- 7.2.1. Пример 1. Дросселирование
- 7.6. Пример подхода к поступательному развитию инициатив в сфере энергоэффективности: «совершенство в производственной деятельности»
- 7.7. Мониторинг и измерения
- 7.7.1. Количественные измерения
- 7.7.2. Оптимизация использования энергоресурсов
- 7.9. Сравнительный анализ
- 7.9.1. Нефтеперерабатывающие заводы
- 7.9.6. Распределение энергозатрат и выбросов CO2 между различными видами продукции в сложном последовательном процессе
- 7.10. Примеры к главе 3
- 7.10.1. Паровые системы
- 7.10.2. Утилизация отходящего тепла
- 7.11. Мероприятия на стороне потребителя
- 7.13. Сайт Европейской комиссии, посвященный вопросам энергоэффективности и Национальные планы действий государств-членов
- 7.15. Оптимизация транспортных систем
- 7.15.3. Улучшение упаковки с целью оптимизации использования транспорта