10.1. Пассивирующие и защитные покрытия ис
В технологиях производства ИС для пассивирования и защиты используются неорганические пленки из нескольких компонентов, которые достаточно формально носят название стекла. Прежде всего к таким материалам относят SiO2 и нитрид кремния. К настоящему моменту существуют различные технологические процессы нанесения стекол на кристалл ИС:
непосредственное осаждение на защищаемую поверхность за счет окисления, напыления или пиролиза;
нанесение готового стеклянного порошка материала в виде смеси или пасты с дальнейшим сплавлением;
катодное реактивное распыление.
В качестве материалов применяются различные многокомпонентные стекла типа Al2O3 – SiO2, B2O3 – SiO2, Al2O3 – B2O3 и др. Возможно также применение стекол состава SixOyN, которые осаждаются из смеси SiH4+NH3+O2 при температурах 900-1000°С. Покрытия Al2O3–SiO2 получаются при 860-1100°C. Кроме того, защитные покрытия можно получать при температурах 250°С-500°С из смеси тетраэтоксисилана и триизобутилалюминия с кислородом.
Рассмотрим фосфоросиликатные стекла (ФСС) состава SiO2–P2O5, широко применяемые для защиты полупроводниковых ИС. Фосфоросиликатные стекла наносятся в основном двумя технологическими методами:
1. Низкотемпературный метод по реакции: SiH4+PH3+O2 P2O5 + H2O.
2. Высокотемпературный метод: POCl3 + O2 + SiO2 SiO2.P2O5 + Cl2 или: POCl3 + SiH4 + CO2 СSiO2.P2O5 + Cl2.
В обоих методах в качестве газа-носителя служит азот. Соответственно продукт реакции SiO2.P2O5 осаждается на предварительно подогретый диоксид кремния, при этом скорость осаждения может составлять до 0,4 мкм/мин. Толщина получаемого покрытия, как правило, составляет до 2 мкм. Во многих случаях, покрытие толщиной ~0,02 мкм оказывается достаточным для защиты от воздействия агрессивных факторов внешней среды. Необходимо заметить, что содержание Р2О5 в таком покрытии невелико, примерно 3-6%.
При больших концентрациях могут проявляться отрицательные поляризационные явления. Их суть заключается в следующем. В кристаллическую решетку SiO2 встраиваются частицы P2O5, образуя в результате ионы РО4, из которых один атом фосфора оказывается положительно поляризованным, а другой – отрицательно, что приводит к ослаблению связи этих атомов с кислородом. Отрицательно поляризованные атомы фосфора способны с помощью атома кислорода связывать ионы, что в итоге придает покрытию геттерные свойства. Влияние концентрации P2O5 в пленках фосфоросиликатных стекол на защитные свойства покрытия хорошо видно на графике:
Рис. 10.1. Зависимость времени безотказной работы
ИС от концентрации Р2О5 в защитном покрытии при
агрессивном воздействии ионов Nа
Пленка фосфоросиликатного стекла толщиной 12,5 нм с концентрацией Р2О5, равной 4%, при поверхностной плотности NNa+~1012 ионов/см2 защищает поверхность ИС в течение 10 лет, обеспечивая безотказную работу ИС при 80°С.
Заметим, что защитные свойства покрытий ФСС от разрушающего воздействия ионов натрия выше, чем при защите нитридом кремния. Твердость покрытий ФСС в 1,5 раза выше, чем SiO2, а механические напряжения, которые они вызывают, уменьшаются с ростом концентрации P2O5 в покрытии и достигают наибольшего значения для чистого SiO2. Благодаря возможности нанесения более толстых покрытий уменьшается количество пор, а защита от механических и тепловых повреждений значительно эффективнее, чем просто из покрытий SiO2 и SiN4.
- 654100 – Электроника и микроэлектроника
- Оглавление
- Часть первая. Микроэлектроника Глава 1. Общая характеристика микроэлектроники. Принципы функционирования элементов
- 1.1. Основные определения
- 1.2. Классификация изделий микроэлектроники
- 1.3. Физические явления, используемые в интегральной микроэлектронике
- 1.4. Процессы и явления, определяющие функционирование интегральных схем (ис)
- 1.5. Контактные явления в микроэлектронных структурах
- 1.6. Поверхностные явления в полупроводниках
- 1.7. Механизмы переноса носителей заряда
- Глава 2. Базовые физико-химические методы создания микроэлектронных структур
- 2.1. Очистка поверхности пластин для ис
- 2.2. Получение полупроводниковых монокристаллов методом вытягивания из расплава
- 2.3. Термическое окисление
- 2.4. Эпитаксия
- 2.5. Фотолитография
- 2.6. Диффузия
- 2.7. Ионная имплантация (ионное легирование)
- 2.8. Металлизация
- Глава 3.Типы подложек интегральных схем, их основные характеристики и процессы изготовления подложек
- 3.1. Изготовление подложек ис
- 3.3. Оптический метод ориентации полупроводниковых пластин
- 3.4. Шлифовка и полировка пластин
- 3.5. Строение нарушенного слоя после механической обработки пластины
- Глава 4. Технология химической обработки подложек для интегральных микросхем
- 4.1. Механизм химической обработки кремниевых пластин
- 4.2. Термохимическое (газовое) травление
- 4.3. Ионно-плазменное травление
- Глава 5. Диэлектрические пленки в ис. Методы их получения. Технологии изготовления гибридных ис
- 5.1. Конструктивно-технологические функции диэлектрических плёнок
- 5.2. Формирование плёнок SiO2термическим окислением кремния
- 5.3. Методы получения диэлектрических пленок в технологии гибридных ис
- 5.3.1. Термовакуумное реактивное испарение
- 5.3.2. Анодное окисление
- 5.3.3. Ионно-плазменное окисление
- Глава 6. Ионное легирование полупроводников
- 6. 1. Общие принципы процесса ионного легирования
- Для количественной оценки ф согласно (6.1) необходимо знать потенциал φ(u) взаимодействия частиц. В простейшем случае он равен кулоновскому потенциалу. Однако в реальном случае
- 6.2. Отжиг дефектов и электрические свойства слоёв
- 6.3. Импульсный лазерный отжиг
- 6.4. Маскирование в процессах ионного легирования
- 6.5. Маскирование фоторезистами
- 6.6. Маскирование пленками металлов
- Глава 7. Элионные методы литографических процессов
- 7.1. Электронно-лучевая литография
- 7.2. Рентгенолучевая литография (рлл)
- 7.2.1. Особенности экспонирования в рлл
- 7.2.2. Технология рентгенолитографических процессов
- 7.2.3. Выбор резистов для рлл
- Глава 8.Пленки в технологии ис, микросборок и коммутационных элементов
- 8.1. Металлические пленки для ис
- 8.2. Технология коммутационных элементов ис
- 8.3. Технология пленочных резисторов
- 8.4. Чистый металл и сплавы
- 8.5. Керметы (микрокомпозиционные пленки)
- 8.6. Изготовление тонкопленочных конденсаторов
- 8.7. Монооксид кремнияSiO
- 8.8. Пятиокись тантала Та2о5
- 8.9. Оксид алюминия Al2o3 и диоксид кремнияSiО2
- 8.10. Диоксид титана ТiО2
- Глава 9.Монтаж кристаллов ис на носителях. Типы носителей. Особенности сборки ис в корпуса
- 9.1. Конструктивно-технологические варианты монтажа
- 9.2. Изготовление ленточных носителей
- 9.3. Получение внутренних выводов на кристаллах ис
- 9.4. Монтаж кристалла ис на гибкую ленту
- 9.5. Монтаж гибридных ис и микросборок
- 9.6. Особенности сборки сверхбыстродействующих ис и процессоров
- Глава 10. Технология герметизации ис и мп
- 10.1. Пассивирующие и защитные покрытия ис
- 10.2. Принципы герметизации ис в корпусах
- 10.3. Герметизация ис в металлических корпусах
- Часть вторая наноэлектроника
- Глава 11. Теоретические основы наноэлектроники. Одноэлектронные приборы
- 11.1. Проблемы наноэлектроники (одноэлектроники)
- 11.2. Базовая теория кулоновской блокады
- 11.3. "Кулоновская лестница"
- 11.5. Квантовые размерные эффекты
- 11.6. Классификация одноэлектронных приборов
- 11.7. Одноэлектронный прибор на основе сканирующего туннельного микроскопа
- 11.8. Субмикронный вертикальный одноэлектронный транзистор (транзистор Остина)
- 11.9. Применение одноэлектронных приборов
- Глава 12. Наночастицы и нанокластеры
- 12.1. Свойства наночастиц и их характеристики
- 12.2. Теоретическое моделирование наночастиц (модель ″желе″)
- 12.3. Геометрическая и электронная структуры нанокластеров
- 12.4. Реакционная способность наночастиц
- 12.5. Флуктуационные наноструктуры
- 12.6. Магнитные кластеры
- 12.7. Переход от макро- к нано-
- 12.8. Полупроводниковые наночастицы
- 12.9. Кулоновский взрыв
- 12.10. Молекулярные кластеры
- 12.11. Методы синтеза наночастиц
- 12.12. Химические методы синтеза наночастиц
- 12.13. Термолиз
- 12.14. Импульсные лазерные методы
- Глава 13.Углеродные наноструктуры
- 13. 1. Природа углеродной связи
- 13.2. Малые углеродные кластеры – с60.
- 13.3. Неуглеродная шарообразная молекула
- 13.4. Углеродные нанотрубки
- 13.4.1. Методы получения нанотрубок
- 13.4.2. Электрические свойства нанотрубок
- 13.4.3. Колебательные свойства нанотрубок
- 13.4.4. Механические свойства нанотрубок
- 13.5. Применение углеродных нанотрубок
- 13.5.1. Полевая эмиссия и экранирование
- 13.5.2. Информационные технологии, электроника
- 13.5.3. Топливные элементы
- 13.5.4. Химические сенсоры
- 13.5.5. Катализ
- 13.5.6. Механическое упрочнение материалов
- Глава 14.Объемные наноструктурированные материалы: разупорядоченные и кристаллизованные
- 14.1. Методы синтеза разупорядоченных структур
- 14.2. Механизмы разрушения традиционных материалов
- 14.3. Механические свойства наноструктурированных материалов
- 14.4. Многослойные наноструктурированные материалы
- 14.5. Электрические свойства наноструктурированных материалов
- 14.6. Нанокластеры в оптическом материаловедении
- 14.7. Пористый кремний
- 14.8. Упорядоченные наноструктуры
- 14.8.1. Упорядоченные структуры в цеолитах
- 14.8.2. Кристаллы из металлических наночастиц
- 14.8.3. Нанокристаллы для фотоники
- Глава 15.Наноприборы и наномашины
- 15.1. Микроэлектромеханические устройства (mems)
- 15.2. Наноэлектромеханические системы (nems)
- 15.3. Наноактуаторы
- 15.4. Молекулярные и супрамолекулярные переключатели
- Библиографический список Основной
- Физические основы технологии микро- и наноэлектроники
- 620002, Екатеринбург, Мира, 19
- 620002, Екатеринбург, Мира, 19