13.4.1. Методы получения нанотрубок
Углеродные нанотрубки можно получать лазерным испарением, углеродной дугой и химическим осаждением паров. Рассмотрим установку для синтеза нанотрубок методом лазерного испарения.
Кварцевая трубка, содержащая мишень из графита, находящуюся в газообразном аргоне, нагревается до 12000С. Внутри трубки, но за пределами печи, находится охлаждаемый водой медный коллектор. Графитовая мишень содержит небольшие количества кобальта и никеля, которые выступают в качестве каталитических зародышей образования нанотрубок.
Рис. 13.5. Схема установки для получения нанотрубок углерода
методом лазерного испарения в среде аргона
При попадании высокоинтенсивного пучка импульсного лазера на мишень графит начинает испаряться. Поток аргона выносит атомы углерода из высокотемпературной зоны к охлажденному медному коллектору, на котором и происходит образование нанотрубок. Таким образом, возможно получение нанотрубок диаметром 10-20 нм и длиной 100 мк.
Нанотрубки можно синтезировать, используя углеродную дугу. К электродам из углерода диаметром 5-20 мм, разнесенным на расстояние порядка 1 мм в потоке гелия при давлении 500 Тор, прикладывается напряжение 20-25 В. Атомы углерода вылетают из положительного электрода и образуют нанотрубки на отрицательном электроде, при этом длина положительного электрода уменьшается, а на отрицательном электроде осаждаются углеродный материал. Для получения однослойных нанотрубок в центральную область положительного электрода добавляют небольшие количества кобальта, никеля или железа в качестве катализатора.
Если не использовать катализаторы, то получаются вложенные друг в друга многослойные нанотрубки (рис. 13.6).
Метод химического осаждения из паровой фазы заключается в разложении газообразного углерода, например метана CH4 при 11000С. При разложении такого газа образуются свободные атомы углерода, конденсирующиеся затем на более холодной подложке, которая может содержать разнообразные катализаторы, например Fe. Химическое осаждение позволяет получать продукт непрерывно и, вообще говоря, является наиболее предпочтительным для увеличения масштабов изготовления при промышленном производстве.
Рис. 13.6. Многослойная нанотрубка
Механизм роста нанотрубок до сих пор неясен. Поскольку для роста однослойных нанотрубок необходим металлический катализатор, то механизм должен объяснять роль атомов катализатора (кобальта и никеля или др.) в процессе роста. Один из предлагаемых механизмов, называемый ″механизмом скутера″, состоит в том, что атомы металлического катализатора присоединяются к оборванным связям на открытом конце трубки и, обегая ее по краю, способствуют захвату атомов углерода из паровой фазы и их встраиванию в стенку трубки.
Обычно при синтезе получается смесь нанотрубок разных видов с различным типом и величиной электропроводности. Так, например, исследовательская группа из фирмы IBM разработала метод отделения полупроводниковых нанотрубок от металлических. Для разделения двух разных типов трубок смешанные пучки нанотрубок осаждают на кремниевую подложку, а затем на эти пучки напыляют металлические электроды. Используя подложку как электрод, на него подают небольшое напряжение смещения, запирающее полупроводниковые трубки и эффективно превращающее их в изоляторы. Затем между металлическими электродами прикладывают высокое напряжение, создающее большой ток в металлических нанотрубках, что приводит к их испарению, после чего на подложке остаются только полупроводниковые нанотрубки.
- 654100 – Электроника и микроэлектроника
- Оглавление
- Часть первая. Микроэлектроника Глава 1. Общая характеристика микроэлектроники. Принципы функционирования элементов
- 1.1. Основные определения
- 1.2. Классификация изделий микроэлектроники
- 1.3. Физические явления, используемые в интегральной микроэлектронике
- 1.4. Процессы и явления, определяющие функционирование интегральных схем (ис)
- 1.5. Контактные явления в микроэлектронных структурах
- 1.6. Поверхностные явления в полупроводниках
- 1.7. Механизмы переноса носителей заряда
- Глава 2. Базовые физико-химические методы создания микроэлектронных структур
- 2.1. Очистка поверхности пластин для ис
- 2.2. Получение полупроводниковых монокристаллов методом вытягивания из расплава
- 2.3. Термическое окисление
- 2.4. Эпитаксия
- 2.5. Фотолитография
- 2.6. Диффузия
- 2.7. Ионная имплантация (ионное легирование)
- 2.8. Металлизация
- Глава 3.Типы подложек интегральных схем, их основные характеристики и процессы изготовления подложек
- 3.1. Изготовление подложек ис
- 3.3. Оптический метод ориентации полупроводниковых пластин
- 3.4. Шлифовка и полировка пластин
- 3.5. Строение нарушенного слоя после механической обработки пластины
- Глава 4. Технология химической обработки подложек для интегральных микросхем
- 4.1. Механизм химической обработки кремниевых пластин
- 4.2. Термохимическое (газовое) травление
- 4.3. Ионно-плазменное травление
- Глава 5. Диэлектрические пленки в ис. Методы их получения. Технологии изготовления гибридных ис
- 5.1. Конструктивно-технологические функции диэлектрических плёнок
- 5.2. Формирование плёнок SiO2термическим окислением кремния
- 5.3. Методы получения диэлектрических пленок в технологии гибридных ис
- 5.3.1. Термовакуумное реактивное испарение
- 5.3.2. Анодное окисление
- 5.3.3. Ионно-плазменное окисление
- Глава 6. Ионное легирование полупроводников
- 6. 1. Общие принципы процесса ионного легирования
- Для количественной оценки ф согласно (6.1) необходимо знать потенциал φ(u) взаимодействия частиц. В простейшем случае он равен кулоновскому потенциалу. Однако в реальном случае
- 6.2. Отжиг дефектов и электрические свойства слоёв
- 6.3. Импульсный лазерный отжиг
- 6.4. Маскирование в процессах ионного легирования
- 6.5. Маскирование фоторезистами
- 6.6. Маскирование пленками металлов
- Глава 7. Элионные методы литографических процессов
- 7.1. Электронно-лучевая литография
- 7.2. Рентгенолучевая литография (рлл)
- 7.2.1. Особенности экспонирования в рлл
- 7.2.2. Технология рентгенолитографических процессов
- 7.2.3. Выбор резистов для рлл
- Глава 8.Пленки в технологии ис, микросборок и коммутационных элементов
- 8.1. Металлические пленки для ис
- 8.2. Технология коммутационных элементов ис
- 8.3. Технология пленочных резисторов
- 8.4. Чистый металл и сплавы
- 8.5. Керметы (микрокомпозиционные пленки)
- 8.6. Изготовление тонкопленочных конденсаторов
- 8.7. Монооксид кремнияSiO
- 8.8. Пятиокись тантала Та2о5
- 8.9. Оксид алюминия Al2o3 и диоксид кремнияSiО2
- 8.10. Диоксид титана ТiО2
- Глава 9.Монтаж кристаллов ис на носителях. Типы носителей. Особенности сборки ис в корпуса
- 9.1. Конструктивно-технологические варианты монтажа
- 9.2. Изготовление ленточных носителей
- 9.3. Получение внутренних выводов на кристаллах ис
- 9.4. Монтаж кристалла ис на гибкую ленту
- 9.5. Монтаж гибридных ис и микросборок
- 9.6. Особенности сборки сверхбыстродействующих ис и процессоров
- Глава 10. Технология герметизации ис и мп
- 10.1. Пассивирующие и защитные покрытия ис
- 10.2. Принципы герметизации ис в корпусах
- 10.3. Герметизация ис в металлических корпусах
- Часть вторая наноэлектроника
- Глава 11. Теоретические основы наноэлектроники. Одноэлектронные приборы
- 11.1. Проблемы наноэлектроники (одноэлектроники)
- 11.2. Базовая теория кулоновской блокады
- 11.3. "Кулоновская лестница"
- 11.5. Квантовые размерные эффекты
- 11.6. Классификация одноэлектронных приборов
- 11.7. Одноэлектронный прибор на основе сканирующего туннельного микроскопа
- 11.8. Субмикронный вертикальный одноэлектронный транзистор (транзистор Остина)
- 11.9. Применение одноэлектронных приборов
- Глава 12. Наночастицы и нанокластеры
- 12.1. Свойства наночастиц и их характеристики
- 12.2. Теоретическое моделирование наночастиц (модель ″желе″)
- 12.3. Геометрическая и электронная структуры нанокластеров
- 12.4. Реакционная способность наночастиц
- 12.5. Флуктуационные наноструктуры
- 12.6. Магнитные кластеры
- 12.7. Переход от макро- к нано-
- 12.8. Полупроводниковые наночастицы
- 12.9. Кулоновский взрыв
- 12.10. Молекулярные кластеры
- 12.11. Методы синтеза наночастиц
- 12.12. Химические методы синтеза наночастиц
- 12.13. Термолиз
- 12.14. Импульсные лазерные методы
- Глава 13.Углеродные наноструктуры
- 13. 1. Природа углеродной связи
- 13.2. Малые углеродные кластеры – с60.
- 13.3. Неуглеродная шарообразная молекула
- 13.4. Углеродные нанотрубки
- 13.4.1. Методы получения нанотрубок
- 13.4.2. Электрические свойства нанотрубок
- 13.4.3. Колебательные свойства нанотрубок
- 13.4.4. Механические свойства нанотрубок
- 13.5. Применение углеродных нанотрубок
- 13.5.1. Полевая эмиссия и экранирование
- 13.5.2. Информационные технологии, электроника
- 13.5.3. Топливные элементы
- 13.5.4. Химические сенсоры
- 13.5.5. Катализ
- 13.5.6. Механическое упрочнение материалов
- Глава 14.Объемные наноструктурированные материалы: разупорядоченные и кристаллизованные
- 14.1. Методы синтеза разупорядоченных структур
- 14.2. Механизмы разрушения традиционных материалов
- 14.3. Механические свойства наноструктурированных материалов
- 14.4. Многослойные наноструктурированные материалы
- 14.5. Электрические свойства наноструктурированных материалов
- 14.6. Нанокластеры в оптическом материаловедении
- 14.7. Пористый кремний
- 14.8. Упорядоченные наноструктуры
- 14.8.1. Упорядоченные структуры в цеолитах
- 14.8.2. Кристаллы из металлических наночастиц
- 14.8.3. Нанокристаллы для фотоники
- Глава 15.Наноприборы и наномашины
- 15.1. Микроэлектромеханические устройства (mems)
- 15.2. Наноэлектромеханические системы (nems)
- 15.3. Наноактуаторы
- 15.4. Молекулярные и супрамолекулярные переключатели
- Библиографический список Основной
- Физические основы технологии микро- и наноэлектроники
- 620002, Екатеринбург, Мира, 19
- 620002, Екатеринбург, Мира, 19