5.1 Анализ потенциальных опасностей и производственных вредностей
В предыдущих разделах дипломного проекта рассматривалась технологическая схема ЛПДС "Черкассы" и система автоматического управления технологическими процессами.
Первичные приборы контроля состояния технологического процесса (датчики давления, уровня, температуры, расхода, загазованности и т.д.) устанавливаются непосредственно в насосной, где в процессе эксплуатации рабочей средой является дизельное топливо, возможное возникновение взрывоопасных смесей, характеристики которых приведены в таблице 5.1
Таблица 5.1 - Взрывоопасные и токсические свойства веществ в рассматриваемой производственной среде
Наименование вещества | Агрегатное состояние | Класс опасности веществ по ГОСТ 12.1.007-06 | Температура °С
| Концентрацион-ный предел взрываемости, % объем | ПДК веществ в воздухе рабочей зоны производственных помещений, мг/м3 | Давление насыщенных паров при T=37,8° С, мм рт. ст. | |||
вспышки | самовоспламенения | нижний | верхний | ||||||
Бензин (АИ-93) | ЛВЖ (п) | 4 | -36 | 360 | 1,1 | 7,0 | 100 | 447 | |
Дизельное топливо (зимнее) | Ж (п) | 4 | 48 | 240 | 0,55 | 7,0 | 300 |
|
Пары нефтепродуктов действуют, главным образом, на центральную нервную систему. Признаки отравления чаще всего проявляются в головокружении, сухости во рту, головной боли, тошноте, сердцебиении, общей слабости и потери сознания.
На быстроту поступления паров нефтепродуктов из воздуха в кровь влияет их растворимость в воде, близкая к растворимости в крови.
Нефтепродукты практически нерастворимы в воде. Углеводороды способны растворяться в поту и жировом покрове кожи, а затем всасываться через кожу и поступать в кровь. При этом начинается головокружение, тошнота.
Перекачиваемое дизельное топливо испаряется и способно образовывать взрывоопасную смесь. Нефтепродукты относятся к легковоспламеняющимся веществам. Их пары с воздухом образуют взрывоопасную смесь. Это выдвигает повышенные требования к надежности и эффективности пожаро- и взрывозащиты. Пары нефтепродуктов способны создавать опасность воспламенения от источника огня. Блуждающие пары тяжелее воздуха, поэтому они стелятся по поверхности пола в цехе, затекают с воздухом и образуют горючие и взрывоопасные смеси.
Пожароопасность технологических процессов в значительной степени определяется физико-химическими свойствами нефтепродуктов [7].
Классификация сооружений по НПБ 105-03 и ПУЭ приведена в таблице 5.2
Таблица 5.2 - Взрывопожарная и пожарная опасность, санитарная характеристика производственных зданий, помещений и наружных установок
Наименование производственных зданий, помещений, наружных установок | Категории взрывопожароопасной и пожарной опасности зданий и помещений (НПБ 105-03) | Классификация зон внутри и вне помещений | |
Класс взрывопожароопасной или пожароопасной зоны (ПУЭ и ПБ 08-624-03) | Категория и группа взрывопожароопасных смесей (ГОСТ12.1.011-78) Р51330.5-99 Р51330.11-99 | ||
Насосная | А | В-1а | IIА-ТЗ |
Операторная | Д | - | - |
При обслуживании первичных датчиков в насосном зале, возникает опасность воздействия на человека шума и вибрации источником которых является насосно-силовое оборудование. Длительное воздействие вибрации высоких уровней на организм человека приводит к развитию преждевременного утомления, нарушению вестибулярного аппарата, снижению остроты слуха, нередко к возникновению профессиональной патологии - вибрационной болезни. Допустимые уровни шума на рабочих местах нормируются документами СН 2.2.4/2.1.8.562-96 "Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки" и СНиП 23-03-2003 "Защита от шума" и не должны превышать 80дБ.
Помещение рассматриваемого насосного зала ЛПДС, где установлены четыре насосных агрегата НМ 1250-400, отделено негорючей перегородкой от зала электродвигателей (рисунок 5.1).
Рисунок 5.1 - Cхема насосной ЛПДС
В разделительной стене в месте прохождения вала соединения насосов и электродвигателей устанавливаются специальные устройства, обеспечивающие герметичность разделительной стенки (диафрагмы с камерами беспромвальных соединений).
Согласно ГОСТ 12.1.019-96, насосный зал относится к помещениям с повышенной опасностью, так как имеет токопроводящие полы, возможно, одновременное прикосновение человека к соединяемым с землей технологическим аппаратом с одной стороны и к металлическим корпусам средств автоматизации - с другой.
В процессе эксплуатации средств автоматизации существует опасность поражения электрическим током. Приборы и средства автоматизации находятся под напряжением 24 В постоянного тока. Так как насосный зал имеет токопроводящие полы, то возможно, одновременное прикосновение человека к соединяемым с землей технологическим аппаратом с одной стороны и к металлическим корпусам средств автоматизации - с другой.
Удар электрическим током вызывает рефлекторную реакцию со стороны центральной нервной системы и ведет к нарушению нормального ритма работы сердца. В результате наблюдается нарушение или полное прекращение деятельности органов дыхания и кровообращения.
При монтаже, наладке, эксплуатации, и ремонте систем автоматики производственные опасности и вредности могут быть обусловлены следующими факторами:
недостаточная освещенность насосного зала при работе в темное время суток, вызывающая повышенную утомляемость, замедляющая реакцию, что может явиться причиной травм;
воздействием атмосферного электричества в насосном зале в летнее время. Прямой удар молнии, при котором ток может достигать 200 кА, напряжение 100 кВ, а температура в канале молнии приблизительно 25000°С, вызывает разрушения большой силы;
при перекачке нефтепродуктов создаются условия для накопления статического электричества с потенциалом до φ=80 кВ. Это является причиной нарушения технологических процессов, снижения точности показания приборов автоматики, неблагоприятно отражается на здоровье рабочих;
наличием давления в аппаратах трубопровода до 5,4 МПа и т.д., в которых эксплуатируются приборы и средства автоматизации производственных процессов. В случаях разгерметизации, отказа регулирующих органов и приборов контроля системы автоматизации, а также при несоблюдении требований ГОСТ 12.2.085-2002 "ССБТ. Сосуды, работающие под давлением. Клапаны предохранительные", возможно возникновение аварийной ситуации;
воздействием движущихся и вращающихся частей оборудования насосов при монтаже, демонтаже и эксплуатации приборов и средств автоматизации;
воздействием шума и вибрации как на приборы, так и на обслуживающий персонал [8].
- Реферат
- Определения, обозначения и сокращения
- Содержание
- Введение
- 1. Линейная производственная диспетчерская станция "Черкассы"
- 1.1 Краткая характеристика линейной производственной диспетчерской станции "Черкассы"
- 1.2 Характеристика технологического оборудования
- 1.3 Характеристика технологических помещений
- 1.4 Режимы работы лпдс "Черкассы"
- 1.5 Магистральный насосный агрегат
- 1.6 Обвязка насосов лпдс "Черкассы"
- 1.7 Анализ существующей схемы автоматизации лпдс "Черкассы"
- 2. Патентная проработка
- 2.1 Выбор и обоснование предмета поиска
- 2.2 Регламент патентного поиска
- 2.3 Результаты патентного поиска
- 2.4 Анализ результатов патентного поиска
- 3 Автоматизация лпдс "Черкассы"
- 3.1 Автоматизация магистрального насосного агрегата
- 3.2 Система противоаварийной защиты
- 3.3 Асу тп на базе контроллеров Modicon tsx Quantum
- 3.4 Структурная схема асу тп на базе системы Quantum
- 3.5 Устройства, входящие в состав системы
- 3.5.1 Модули источников питания
- 3.5.2 Модули центрального процессорного устройства (цпу)
- 3.5.3 Модули ввода/вывода
- 3.5.4 Система горячего резервирования Quantum
- 3.5.5 Модули Advantech
- 3.6 Технические средства автоматизации
- 3.6.1 Электрические датчики давления серии Сапфир-22мт (Россия)
- 3.6.2 Уровнемер серии "омюв"
- 4. Выбор системы виброконтроля мна
- 4.1 Аппаратура контроля вибромониторинга (акв)
- 4.2 Аппаратура контроля вибрации "Каскад"
- 4.3 Разработка программы управления насосным агрегатом
- 4.3.1 Описание работы контроллера Modicon tsx Quantum
- 4.4 Инструментальная система программирования промышленных контроллеров
- 4.4.1 Архитектура iSaGraf
- 4.4.2 Языки программирования, реализованные в iSaGraf
- 4.5 Описание языка st
- 4.6 Создание проекта и программ в системе iSaGraf
- 4.7 Программирование контроллера
- 4.8 Алгоритм сигнализации и управления насосным агрегатом
- 4.9 Результаты работы программы
- 5. Охрана труда и техника безопасности магистральной насосной мнпп "Уфа-Западное направление"
- 5.1 Анализ потенциальных опасностей и производственных вредностей
- 5.2 Мероприятия по технике безопасности при эксплуатации объектов лпдс "Черкассы"
- 5.3 Мероприятия по промышленной санитарии
- 5.3.1 Требования к спецодежде
- 5.3.2 Требования к освещению
- 5.3.3 Требования к микроклимату
- 5.4 Мероприятия по пожарной безопасности
- 5.5 Расчет установки пенного тушения и пожарного водоснабжения
- 6. Оценка экономической эффективности автоматизации линейно-производственной диспетчерской станции "Черкассы"
- 6.1 Основные источники повышения эффективности
- 6.2 Методика расчета экономической эффективности
- 6.2.1 Чистый дисконтированный доход (чдд)
- 6.2.2 Индекс доходности (ид)
- 6.3 Расчет экономического эффекта
- 6.3.1 Расчет капитальных вложений
- 6.3.2 Расчет текущих издержек
- 6.3.3 Расчет экономии от использования асу тп.
- Заключение
- Список использованных источников
- Приложения Приложение а
- Приложение б
- Приложение в
- Приложение г
- Приложение д
- Приложение е