3.6.1 Электрические датчики давления серии Сапфир-22мт (Россия)
Работа датчика основана на использовании тензоэффекта в полупроводниках. Измеряемое давление, воспринимаемое мембраной измерительного блока, преобразуется в силу, передаваемую на чувствительный элемент тензопреобразователя. Под действием силы упругий элемент тензопреобразователя деформируется, изменяя сопротивления расположенных на нем тензорезисторов.
Электронный блок преобразует это изменение сопротивления в токовый выходной сигнал и осуществляет компенсацию температурных погрешностей.
Схема датчика давления Сапфир-22МТ показан на рисунке 3.3.
Рисунок 3.3 - Схема датчика давления Сапфир-22МТ
Тензопреобразователь 4, мембранно-рычажного типа размещен в нутрии основания 9, в замкнутой полости 11, заполненной кремнийорганической жидкостью, и отделен от измеряемой среды металлическими гофрированными мембранами 8. Мембраны 8 приварены по наружному контуру у основанию 9 и соединены между собой центральным штоком 6, который связан с концом рычага тензопреобразователя 4 с помощью тяги 5. Фланцы 10 уплотнены прокладками 3. Воздействие измеряемого параметра (большее давление подается в плюсовую камеру, меньшее - в минусовую камеру 12) вызывает прогиб мембран 8, изгиб мембраны тензопреобразователя 4 и изменение сопротивления тензорезисторов.
Электронный блок смонтирован на двух платах, которые размещаются в корпусе датчика. Блок схема электронного блока приведена на рисунке 3.4 Сигнал с тензопреобразователя 2 поступает на вход инструментального усилителя 3, на другой вход инструментального усилителя поступает сигнал от корректора температурной нелинейности начального значения выходного сигнала 5. В качестве информационного источника о значении температуры используется напряжение на диагонали питания тензопреобразователя. Сигнал с инструментального усилителя подается на корректор статической нелинейности 6 и оттуда на переключатель пределов 7.
Технические данные датчика Сапфир-22М (модель 2161):
диапазон входного давления, МПа 0.6,3
выходной ток, мА 4.20, постоянный
класс точности 0,5
порог нечувствительности, %, не более 0,1
погрешность нулевой точки, 0,5
зависимость входного и выходного сигнал линейная
температура измеряемой среды на входе датчика 0C минус 50. + 80
вибростойкость, Гц 0.500
Сигнал с переключателя пределов 7 подается параллельно на корректор температурной погрешности диапазона 8 и на один из выходов выходного преобразователя "напряжение - ток" 4. На второй вход преобразователя "напряжение - ток" подается сигнал коррекции температурной нелинейности диапазона 9. В качестве информационного источника о значении температуры используется независимый кремневый резистор, изготовленный из того же материала, что и тензорезисторы.
Рисунок 3.4 - Блок схема электронного блока
- Реферат
- Определения, обозначения и сокращения
- Содержание
- Введение
- 1. Линейная производственная диспетчерская станция "Черкассы"
- 1.1 Краткая характеристика линейной производственной диспетчерской станции "Черкассы"
- 1.2 Характеристика технологического оборудования
- 1.3 Характеристика технологических помещений
- 1.4 Режимы работы лпдс "Черкассы"
- 1.5 Магистральный насосный агрегат
- 1.6 Обвязка насосов лпдс "Черкассы"
- 1.7 Анализ существующей схемы автоматизации лпдс "Черкассы"
- 2. Патентная проработка
- 2.1 Выбор и обоснование предмета поиска
- 2.2 Регламент патентного поиска
- 2.3 Результаты патентного поиска
- 2.4 Анализ результатов патентного поиска
- 3 Автоматизация лпдс "Черкассы"
- 3.1 Автоматизация магистрального насосного агрегата
- 3.2 Система противоаварийной защиты
- 3.3 Асу тп на базе контроллеров Modicon tsx Quantum
- 3.4 Структурная схема асу тп на базе системы Quantum
- 3.5 Устройства, входящие в состав системы
- 3.5.1 Модули источников питания
- 3.5.2 Модули центрального процессорного устройства (цпу)
- 3.5.3 Модули ввода/вывода
- 3.5.4 Система горячего резервирования Quantum
- 3.5.5 Модули Advantech
- 3.6 Технические средства автоматизации
- 3.6.1 Электрические датчики давления серии Сапфир-22мт (Россия)
- 3.6.2 Уровнемер серии "омюв"
- 4. Выбор системы виброконтроля мна
- 4.1 Аппаратура контроля вибромониторинга (акв)
- 4.2 Аппаратура контроля вибрации "Каскад"
- 4.3 Разработка программы управления насосным агрегатом
- 4.3.1 Описание работы контроллера Modicon tsx Quantum
- 4.4 Инструментальная система программирования промышленных контроллеров
- 4.4.1 Архитектура iSaGraf
- 4.4.2 Языки программирования, реализованные в iSaGraf
- 4.5 Описание языка st
- 4.6 Создание проекта и программ в системе iSaGraf
- 4.7 Программирование контроллера
- 4.8 Алгоритм сигнализации и управления насосным агрегатом
- 4.9 Результаты работы программы
- 5. Охрана труда и техника безопасности магистральной насосной мнпп "Уфа-Западное направление"
- 5.1 Анализ потенциальных опасностей и производственных вредностей
- 5.2 Мероприятия по технике безопасности при эксплуатации объектов лпдс "Черкассы"
- 5.3 Мероприятия по промышленной санитарии
- 5.3.1 Требования к спецодежде
- 5.3.2 Требования к освещению
- 5.3.3 Требования к микроклимату
- 5.4 Мероприятия по пожарной безопасности
- 5.5 Расчет установки пенного тушения и пожарного водоснабжения
- 6. Оценка экономической эффективности автоматизации линейно-производственной диспетчерской станции "Черкассы"
- 6.1 Основные источники повышения эффективности
- 6.2 Методика расчета экономической эффективности
- 6.2.1 Чистый дисконтированный доход (чдд)
- 6.2.2 Индекс доходности (ид)
- 6.3 Расчет экономического эффекта
- 6.3.1 Расчет капитальных вложений
- 6.3.2 Расчет текущих издержек
- 6.3.3 Расчет экономии от использования асу тп.
- Заключение
- Список использованных источников
- Приложения Приложение а
- Приложение б
- Приложение в
- Приложение г
- Приложение д
- Приложение е