Глава XII Методы обработки заготовок без снятия стружки
1. ЧИСТОВАЯ ОБРАБОТКА
ПЛАСТИЧЕСКИМ
ДЕФОРМИРОВАНИЕМ
Методы обработки без снятия стружки все больше применяют для деталей в связи с ужесточением эксплуатационных характеристик машин: высокой производительности, быстроходности, прочности, точности и др. Такой обработке подвергают предварительно подготовленные поверхности.
Если формы заготовок приблизить к формам готовых деталей, то ответственные поверхности можно обрабатывать шлифованием и затем окончательно од-
ним из методов обработки без снятия стружки. Предоставляется возможность уменьшить количество отходов и упростить обработку.
Методы обработки основаны на использовании пластических свойств металлов, т.е. способности металлических заготовок принимать остаточные деформации без нарушения целостности металла. Отделочная обработка методами пластического деформирования сопровождается упрочнением поверхностного слоя, что очень важно для повышения надежности работы деталей. Детали становятся менее чувствительными к усталостному разрушению, повышаются их коррозионная
МЕТОДЫ ОБРАБОТКИ ЗАГОТОВОК БЕЗ СНЯТИЯ СТРУЖКИ
435
стойкость и износостойкость сопряжении, удаляются риски и микротрещины, оставшиеся от предшествующей обработки. В ходе обработки шаровидная форма кристаллитов поверхности металла может измениться, кристаллиты сплющиваются в направлении деформации, образуется упорядоченная структура волокнистого характера. Поверхность заготовки принимает требуемые формы и размеры в результате перераспределения элементарных объемов под воздействием инструмента. Исходный объем заготовки остается постоянным.
В зоне обработки не возникает высокая температура, поэтому в поверхностных слоях фазовые превращения не происходят.
Обработку без снятия стружки выполняют на многих металлорежущих станках и установках, используя специальные инструменты. Созданы также особые станки, на которых наряду с резанием заготовки обрабатывают пластическим деформированием. Методы чистовой обработки используют для всех металлов, способных пластически деформироваться, но наиболее эффективны они для металлов с твердостью до НВ 280.
Ожидается, что эти методы все больше будут применяться для высокоточной
обработки и использоваться для деталей, размеры которых будут иметь точность в долях микрометра.
2. ОБКАТЫВАНИЕ И РАСКАТЫВАНИЕ ПОВЕРХНОСТЕЙ
Обкатыванием и раскатыванием отделывают и упрочняют цилиндрические, конические, плоские и фасонные наружные и внутренние поверхности.
Сущность этих методов состоит в том, что в результате давления поверхностные слои металла, контактируя с инструментом высокой твердости, оказываются в состоянии всестороннего сжатия и пластически деформируются. Инструментом являются ролики и шарики, перемещающиеся относительно заготовки. Микронеровности обрабатываемой поверхности сглаживаются путем смятия микровыступов и заполнения микровпадин.
Обкатывают, как правило, наружные поверхности, а раскатывают внутренние цилиндрические и фасонные поверхности. При обкатывании роликами основными параметрами режима упрочнения являются давление в зоне контакта с роликом, число его проходов, подача и скорость обкатывания. Глубину деформированного слоя определяет давление.
3е" ")""fov
*)
S)
Рис. 6.101. Схемы обкатывания и раскатывания поверхностей
436
МЕХАНИЧЕСКАЯ ОБРАБОТКА ЗАГОТОВОК ДЕТАЛЕЙ МАШИН
На рис. 6.101 показаны распространенные схемы обкатывания и раскатывания поверхностей. К вращающейся цилиндрической заготовке подводят закаленный гладкий ролик-обкатку (рис. 6.101, а), который под действием рабочего давления деформирует поверхность. Движение продольной подачи позволяет обрабатывать всю заготовку. Аналогичным инструментом обрабатывают элементы заготовок, но с поперечным движением (рис. 6.101, б). При раскатывании ролик-раскатку закрепляют на консольной оправке (рис. 6.101, в). Более совершенна конструкция инструмента с несколькими роликами (рис. 6.101, г).
Для обеспечения значительной однородности форм микронеровностей используют разнообразные конструкции инструментов, различающихся числом и формой деформирующих частей (роликов, шариков). Наилучшие результаты обеспечивают инструменты, на которые силы передаются через упругие элементы. Этим достигаются постоянные условия обработки в любой точке обрабатываемой поверхности. Сила может регулироваться.
Для обработки поверхностей обкатыванием и раскатыванием чаще всего используют токарные или карусельные станки, применяя вместо режущего инструмента обкатки и раскатки. Суппорты обеспечивают необходимое движение подачи. Раскатки можно устанавливать в пиноли задних бабок. Глубокие отверстия раскатывают на станках для глубокого сверления.
Так как нагрев заготовок в местах контакта с инструментом незначителен, охлаждения не требуется. Для уменьшения трения используют смазывание веретенным маслом или керосином.
Обкатыванием и раскатыванием лишь в незначительной степени исправляют погрешности предшествующей обработки. Поэтому предварительная обработка заготовок должна быть точной с учетом смятия микронеровностей и изменения окончательного размера детали. Решающее
значение в достижении необходимого качества поверхностного слоя имеет давление на поверхность. Чрезмерно большое давление так же, как и большое число проходов инструмента, разрушает поверхность и может привести к отслаиванию ее отдельных участков.
3. АЛМАЗНОЕ ВЫГЛАЖИВАНИЕ
Малой шероховатости поверхности и ее упрочнения можно достичь алмазным выглаживанием. Сущность этого метода состоит в том, что оставшиеся после обработки резанием неровности поверхности выглаживаются перемещающимся по ней прижатым алмазным инструментом. Алмаз, закрепленный в державке, не вращается, а скользит с весьма малым коэффициентом трения. Рабочая часть инструмента выполнена в виде полусферы, цилиндра или конуса. Чем тверже обрабатываемый материал, тем меньше радиус скругления рабочей части алмаза.
Преимущества алмазного выглаживания состоят в повышении эксплуатационных свойств обработанных поверхностей, снижении шероховатости поверхности, отсутствии переноса на обрабатываемую поверхность посторонних частиц, возможности обработки тонкостенных деталей и деталей сложной конфигурации, простоте конструкции выглаживателей.
Заготовки обрабатывают на станках токарной группы. Державку с подпружиненным наконечником с алмазом устанавливают в резцедержателе вместо резца. Движения заготовки и инструмента аналогичны движениям заготовки и инструмента при обтачивании.
Силы прижатия алмаза к обрабатываемой поверхности сравнительно малы и колеблются в интервале 50 ... 300 Н. Процесс выглаживания ведут со смазыванием веретенным маслом, что примерно в 5 раз уменьшает износ алмаза по сравнению с износом при выглаживании всухую. Применение керосина или эмульсии приводит к интенсивному износу алмаза. Число проходов инструмента не должно быть более двух.
МЕТОДЫ ОБРАБОТКИ ЗАГОТОВОК БЕЗ СНЯТИЯ СТРУЖКИ
437
4. КАЛИБРОВКА ОТВЕРСТИЙ
Калибровкой повышают точность отверстий и получают поверхности высокого качества. Метод характеризуется высокой производительностью.
Сущность калибровки сводится к перемещению в отверстии с натягом жесткого инструмента. Размеры поперечного сечения инструмента несколько больше размеров поперечного сечения отверстия. При этом инструмент сглаживает неровности, исправляет погрешности, упрочняет поверхность.
Простейшим инструментом служит шарик, который проталкивается штоком (рис. 6.102, а). Роль инструмента может выполнять также оправка-дорн (рис. 6.102, б), к которому прикладывается сжимающая или растягивающая (рис. 6.102, в) сила. Заготовки обрабатываются за один или несколько ходов инструмента.
Заготовки обрабатывают с малыми либо большими натягами. В первом случае зона пластического деформирования не распространяется на всю толщину детали. Так обрабатывают толстостенные заготовки. Во втором случае зона пластического деформирования охватывает всю деталь. Этот вариант обработки используют для тонкостенных деталей, что существенно повышает их точность.
Шарики как инструмент не обеспечивают оптимальных условий деформирования и имеют малую стойкость. Калибрующие оправки выполняют одноэлементными, многоэлементными или сборными. Каждый из элементов-поясков имеет свой размер. Деформирующие элементы изготовляют из твердого сплава или стали, закаленных до высокой твердости.
В качестве смазочного материала для сталей и бронз применяют сульфофрезол, для чугунов - керосин. Разработаны специальные смазочные материалы, обеспечивающие жидкостное трение. Они снижают рабочее усилие оборудования, способствуют повышению качества поверхностных слоев, увеличивают точность обработки и стойкость инструмента.
Отверстия калибруют на прессах (рис. 6.102, а, б) или горизонтально-протяжных станках (рис. 6.102, в). Для правильного взаимного расположения инструмента и заготовки обычно применяют самоустанавливающиеся приспособления с шаровой опорой. Заготовку не закрепляют.
5. ВИБРОНАКАТЫВАНИЕ
Для повышения износостойкости деталей машин на поверхностях трения целесообразно выдавливать слабозаметные, прилегающие друг к другу канавки. В канавках скапливаются смазочный материал
Рис. 6.102. Схемы калибровки отверстий
438
МЕХАНИЧЕСКАЯ ОБРАБОТКА ЗАГОТОВОК ДЕТАЛЕЙ МАШИН
Рис. 6.103. Схема вибронакатывания
и мелкие частицы, образовавшиеся в процессе изнашивания. Канавки образуются вибронакатыванием.
Упрочняющему элементу - шару или алмазу, установленному в резцедержателе токарного станка, помимо движения Ds
(рис. 6.103) специальным устройством сообщают дополнительные движения алмаза Ц, с относительно малой амплитудой. Изменяя £>заг, Аф> амплитуду и частоту колебаний, можно на обрабатываемой поверхности получить требуемый рисунок. Распространение получили рисунки с непересекающимися канавками, с не полностью пересекающимися и со сливающимися канавками. Возможно также вибронакатывание внутренних и плоских поверхностей.
Канавки одновременно упрочняют поверхность. Важнейшей характеристикой такой поверхности является общая площадь канавок (в процентах от номинальной площади обрабатываемой поверхности). Такие отклонения для каждого типа рисунка определяют аналитически.
6. ОБКАТЫВАНИЕ ЗУБЧАТЫХ КОЛЕС
Пластическое деформирование поверхностных слоев повышает работоспособность зубчатых колес. Микронеровности, оставшиеся от предшествующей обработки, сглаживаются путем смятия специальным инструментом.
Обрабатываемое зубчатое колесо вводят в плотное зацепление с тремя остальными, закаленными эталонными колесами. Последние имеют полированные зубья и располагаются вокруг обкатываемого колеса. Эталонные колеса прижимаются к обкатываемому с помощью пружинных устройств. Сила прижима регламентируется. Одно из эталонных колес является ведущим и приводит во вращение обрабатываемое колесо, а через него - два остальных эталонных колеса. Движение колес реверсируется. Колеса обкатывают со смазочными материалами на специальных зубообкатных станках.
Обкатыванием лишь частично исправляют профиль зуба и его размеры путем сглаживания шероховатостей.
7. НАКАТЫВАНИЕ РЕЗЬБ, ШЛИЦЕВЫХ ВАЛОВ И ЗУБЧАТЫХ КОЛЕС
Формообразование фасонных поверхностей в холодном состоянии методом накатывания имеет ряд преимуществ. Главные из них - очень высокая производительность, низкая стоимость обработки, высокое качество обработанных деталей. Накатанные детали имеют более высокое сопротивление усталости. Это объясняется тем, что при формообразовании накатыванием волокна исходной заготовки не перерезаются, как при обработке резанием. Профиль накатываемых деталей образуется за счет вдавливания инструмента в материал заготовки и выдавливания части его во впадины инструмента. Такие методы сочетают в себе функции черновой, чистовой и отделочной обработок. Их используют для получения резьб, валов с мелкими шлицами и зубчатых мелкомодульных колес.
Резьбы накатывают обычно до термической обработки, хотя точные резьбы можно накатывать и после нее.
При формировании резьбы плашками (рис. 6.104, а) заготовку 2 помещают между неподвижной 1 и подвижной 3 плаш-
МЕТОДЫ ОБРАБОТКИ ЗАГОТОВОК БЕЗ СНЯТИЯ СТРУЖКИ
439
=^Ц^2 3
а)
в) Рис. 6.104. Схемы накатывания
ками, имеющими на рабочих поверхностях рифления, профиль и расположение которых соответствуют профилю и шагу накатываемой резьбы. При перемещении подвижной плашки заготовка катится между инструментами, а на ее поверхности образуется резьба.
При формировании резьбы роликами (рис. 6.104, б) ролики 4 и 5 получают принудительное вращение, заготовка 2 свободно обкатывается между ними. Ролику 5 придается радиальное движение для вдавливания в металл заготовки на необходимую глубину. Обработка роликами требует меньших сил, с их помощью накатывают резьбы с более крупным шагом.
При накатывании мелких шлицев на валах (рис. 6.104, в) накатный ролик имеет профиль шлицев. Он внедряется в поверхность заготовки при вращении и поступательном продольном перемещении вдоль вала.
Накатывание цилиндрических (рис. 6.104, г) и конических мелкомодульных колес в 15 ... 20 раз производительнее зу-бонарезания. Процесс можно осуществлять на токарных станках накатниками б
и 7, которые закреплены на суппорте и перемещаются, совершая движение Ds
Каждый накатник имеет заборную часть для постепенного образования накатываемых зубьев на заготовке 2.
Для накатывания применяют универсальное специальное оборудование. Для образования резьб служат резьбонакат-ные станки, обеспечивающие силы до 2 ■ 105 Н. Эти станки автоматизированы и имеют горизонтальное, наклонное или вертикальное движение ползуна с плашкой. Резьбы роликами накатывают на автоматах.
На автоматизированном оборудовании -прессах - накатывают и шлицы. Шлице-накатный пресс может заменить 10 ... 15 шлицефрезерных станков. Рабочие усилия создаются мощными гидравлическими устройствами.
Зубчатые колеса накатывают на специальных станках. Получает распространение комбинированное накатывание (горячее накатывание с последующей холодной калибровкой).
440
МЕХАНИЧЕСКАЯ ОБРАБОТКА ЗАГОТОВОК ДЕТАЛЕЙ МАШИН
Рис. 6.105. Схемы накатывания рифлений и клейм
8. НАКАТЫВАНИЕ РИФЛЕНИЙ И КЛЕЙМ
Методом холодного накатывания на отдельных элементах деталей наносят рифления, маркировочные клейма, знаки. Производительность метода весьма велика. В основе накатывания лежит способность металла получать местные деформации под действием накатных роликов или накатников.
На рис. 6.105, а приведена схема накатывания рифленой поверхности. Заготовку закрепляют на токарном станке, на суппорте которого установлена державка с одним или двумя накатными роликами. Ролики внедряются в поверхность заготовки (Ds ) и перемещаются вдоль заготовки с движением Ds . Вид рифлений
(рис. 6.105, б) определяется характером зубчиков на роликах. Крестовое рифление производят двумя роликами, один из которых имеет правое направление отпечатывающих зубчиков, а другой - левое. Оба ролика вращаются на осях самоустанавливающейся державки. Для накатывания клейм (рис. 6.105, в) на накатнике / располагают негативно выступающие знаки. Заготовку 2 устанавливают на ролики для более легкого перемещения в момент накатывания.
9. УПРОЧНЯЮЩАЯ ОБРАБОТКА ПОВЕРХНОСТНЫХ СЛОЕВ ДЕТАЛЕЙ
Упрочняющую обработку предпринимают для увеличения сопротивления усталости деталей. Методы упрочнения осно-
в)
ваны на локальном воздействии инструмента на обрабатываемый материал. При этом возникают многочисленные зоны воздействия на весьма малых участках поверхности, в результате чего создаются очень большие местные давления. Многочисленные контакты с инструментом приводят к упрочнению поверхностного слоя. В поверхностных слоях возникают существенные напряжения сжатия.
Прочность конструкционных материалов повышается благодаря воздействию нагрузок, создающих эффективные препятствия для движения несовершенств кристаллической решетки. При этом создаются структуры с повышенной плотностью закрепленных и равномерно распределенных по объему дислокаций.
Распространено упрочнение нанесением ударов по поверхности заготовки шариками, роликами, различными бойками. При динамическом упрочнении в качестве инструмента используют диск, в котором по окружности в несколько рядов расположены ролики, свободно сидящие на осях. Диск закрепляют на шпинделе металлорежущего станка. При вращении диска ролики наносят по упрочняемой поверхности очень большое количество ударов.
При статическом упрочнении на поверхность заготовки воздействуют вращающимися роликами в процессе обкатывания или раскатывания.
Процесс упрочнения можно выполнять на специальных установках. При ультразвуковом деформационном упрочнении заготовки закрепляют в камерах,'содер-
МЕТОДЫ ОБРАБОТКИ ЗАГОТОВОК БЕЗ СНЯТИЯ СТРУЖКИ
441
жащих большое количество стальных шариков диаметром 1 мм, смачиваемых эмульсией. Камера получает колебания от ультразвукового генератора, и колеблющиеся шарики наносят удары по поверхности заготовки. Шероховатость поверхности после деформационного упрочнения увеличивается.
Распространено дробеструйное динамическое упрочнение. Готовые детали машин подвергают ударному действию потока дроби в специальных камерах, где дробинки с большой скоростью перемещаются под действием потока воздушной струи или центробежной силы. Эффектом поверхностного упрочнения можно управлять, подавая сухую или мокрую дробь. Дробь изготовляют из отбеленного чугуна, стали, алюминия, стекла и других материалов. Исходная шероховатость обрабатываемой поверхности увеличивается.
Этот метод применяют для таких изделий, как рессорные листы, пружины, лопатки турбин, штоки, штампы.
Эффект деформационного упрочнения повышается при использовании импульсных нагрузок, в частности взрывной волны. При упрочении взрывом необходимы энергоноситель и среда, передающая давление на упрочняемую деталь. В качестве энергоносителя используют бризантные взрывчатые вещества, обеспечивающие как поверхностные, так и сквозные упрочнения деталей.
ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ
Каковы основные преимущества обработки без снятия стружки?
Каковы преимущества метода раскатывания отверстий инструментом с несколькими роликами?
Как вы представляете себе схему автомата для калибрования отверстий шариками?
Какой может быть схема обкатывания зубчатых колес?
Какова суть явления упрочнения поверхностных слоев деталей?
РАЗДЕЛ
7
ЭЛЕКТРОФИЗИЧЕСКИЕ
И ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ
ОБРАБОТКИ
1. ХАРАКТЕРИСТИКА ЭЛЕКТРОФИЗИЧЕСКИХ И ЭЛЕКТРОХИМИЧЕСКИХ МЕТОДОВ ОБРАБОТКИ
Развитие всех отраслей промышленности, особенно авиационной и ракетно-космической техники, привело к использованию материалов со специальными эксплуатационными свойствами: сверхтвердых, весьма вязких, жаропрочных, композиционных. Обработка заготовок из этих материалов обычными методами (способами) механической обработки весьма затруднительна или невозможна вообще. Поэтому параллельно с разработкой этих материалов создавались принципиально новые методы (способы) обработки. Характерно, что при механической обработке в технологическом оборудовании электрическая энергия превращается в механическую и за счет силового воздействия инструмента (штампа, резца, фрезы, шлифовального круга и т.д.) на заготовку происходит ее формоизменение (формообразование).
Электрофизические и электрохимические (ЭФЭХ) методы обработки основаны на непосредственном воздействии различных видов энергии (электрической, химической и др.) на обрабатываемую заготовку. При обработке заготовок этими методами отсутствует силовое воздействие инструмента на заготовку или оно на-
столько мало, что практически не влияет на суммарную погрешность обработки. Эти методы позволяют изменять форму обрабатываемой поверхности заготовки и влиять на состояние поверхностного слоя. Так, в некоторых случаях наклеп обработанной поверхности не образуется, дефектный слой незначителен, удаляются прижоги поверхности, полученные при шлифовании, повышаются коррозионные, прочностные и другие эксплуатационные характеристики поверхностей деталей.
Кинематика формообразования поверхностей деталей ЭФЭХ методами обработки, как правило, проста, что обеспечивает точное регулирование процессов и их автоматизацию. ЭФЭХ методы обработки являются универсальными и обеспечивают непрерывность процессов при одновременном формообразовании всей обрабатываемой поверхности. При этом появляется возможность обрабатывать очень сложные наружные и внутренние поверхности заготовок.
Технологическое оборудование для ЭФЭХ методов обработки, так же как и металлорежущие станки, оснащается системами ЧПУ. Внедрение их в различных отраслях промышленности обеспечивает получение значительного экономического эффекта. Классификация ЭФЭХ методов обработки по их физической сущности показана на рис. 6.1.
ЭЛЕКТРОФИЗИЧЕСКИЕ И ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ
443
2. ЭЛЕКТРОЭРОЗИОННАЯ ОБРАБОТКА
При электроэрозионной обработке (ЭЭО) используют явление эрозии (разрушения) электродов из токопроводящих материалов при пропускании между ними импульсов электрического тока. Заготовку и инструмент, изготовленные из токопроводящих материалов, подключают к источнику тока -генератору импульсов (ГИ) и помещают в диэлектрическую жидкость (рис. 7.1).
При сближении электрода-инструмента (Э-И) и электрода-заготовки (Э-3) на расстояние в несколько микрометров (10 ... 50 мкм) между микровыступами на Э-И и Э-3 возникает электрический разряд и образуется канал проводимости (рис. 7.1, а), в котором от катода к аноду движется поток электронов.
Навстречу этому потоку движутся более тяжелые частицы - ионы (рис. 7.1, б). Электроны быстрее достигают поверхности анода. Поэтому энергия электрического разряда смещается ближе к поверхности заготовки (Э-3). Температура электрического разряда достигает 10 000 ... 12 000 °С. При такой температуре происходят мгновенное оплавление и частичное испарение элементарного объема материала заготовки. При этом время протекания разряда чрезвычайно мало. Поэтому процесс выделения энергии сопровождается явлением микровзрыва. За счет этого опла-
вившиеся частицы металла выбрасываются в окружающую среду (рис. 7.1, в), охлаждаются диэлектрической жидкостью и застывают в виде малых шариков (0,01 ... 0,005 мм), образуя шлам - продукт эрозии. В результате на поверхности анода образуется сферическое углубление -лунка. Поверхность катода также подвергается частичному эрозионному разрушению (рис. 7.1, в).
Следующий разряд произойдет в том месте, где расстояние между инструментом и заготовкой окажется минимальным. Так образуется вторая лунка на поверхности заготовки. При воздействии серии электрических импульсов с анода удаляется слой материала. Непрерывность процесса обеспечивается за счет подачи Э-И. Постоянство межэлектродного зазора обеспечивается автоматически с помощью следящих систем.
Обработанная поверхность представляет собой совокупность лунок (рис. 7.1, г), глубина которых определяет шероховатость поверхности.
Помимо шероховатости обработанная поверхность характеризуется следующими показателями:
- вследствие мгновенного нагрева поверхности заготовки до температуры плавления металла и резкого охлаждения в среде диэлектрической жидкости возникают температурные напряжения, приводящие к возникновению микротрещин;
Рис. 7.1 .Схема процесса ЭЭО
В) в)
444
ЭЛЕКТРОФИЗИЧЕСКИЕ И ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ
за счет нагрева до высоких температур и возможного поглощения углерода из окружающей среды в поверхностном слое происходят структурные изменения и, с учетом быстрого охлаждения, твердость поверхностного слоя значительно повышается по сравнению с твердостью основного материала стальной заготовки;
под действием высокой температуры в зоне оплавления основной материал вступает в химическую реакцию с отдельными элементами материалов электрода-инструмента и диэлектрической жидкости, что ведет к изменению химического состава поверхностного слоя.
При малой длительности импульсов (5 ... 200 мкс) поверхности катода успевает достичь лишь малая доля ионов. Поэтому поверхность катода значительно меньше подвергается эрозионному разрушению по сравнению с поверхностью анода. Именно поэтому анодом делают заготовку (Э-3), а катодом - инструмент (Э-И). Такую полярность называют прямой (см. рис. 7.1, а). При большей длительности импульсов (2 ■ 102 ... 105 мкс) многие ионы успевают достичь поверхности катода, и, обладая большей энергией по сравнению с потоком электронов, вызывают интенсивную эрозию катода. В этом случае обработку осуществляют при обратной полярности: Э-И является анодом, а Э-3 - катодом.
В зависимости от параметров импульсов и используемого оборудования ЭЭО подразделяют на электроискровую, электроимпульсную, высокочастотную и электроконтактную.
При электроискровой обработке используют прямую полярность, т.е. Э-И подсоединяют к катоду, а Э-3 - к аноду. Генератор импульсов настраивают на соответствующие режимы обработки. Продолжительность импульса составляет 20 ... 200 мкс. Величина энергии импульса регулируется подбором емкости конденсаторов.
При увеличении емкости конденсатора накапливаемый запас энергии возрастает и, следовательно, повышается производи-
тельность процесса. В зависимости от количества энергии, расходуемой в импульсе, режим обработки делят на жесткий или средний (для предварительной обработки) и мягкий или особо мягкий (отделочной обработки). Мягкий режим обработки позволяет получать размеры с точностью до 0,002 мм при шероховатости поверхности Ra 0,63 ... 0,16 мкм.
Обработку ведут в ваннах, заполненных диэлектрической жидкостью. Жидкость исключает нагрев электродов (инструмента и заготовки), охлаждает продукты разрушения, уменьшает боковые разряды между инструментом и заготовкой, что повышает точность обработки.
Для обеспечения непрерывности процесса обработки необходимо, чтобы зазор между инструментом-электродом и заготовкой был постоянным. Для этого электроискровые станки снабжают следящей системой и механизмом автоматической подачи инструментов. Инструменты-электроды изготовляют из меди, латуни, медно-графитовых и других материалов.
В эрозионных станках используют различные ГИ электрических разрядов: RC (резистор - емкость); RLC (L - индуктивность); LC; ламповые генераторы. В промышленности применяют широкодиапазонные транзисторные ГИ. Эти генераторы потребляют мощность 4 ... 18 кВт при силе тока 16 ... 125 А. Эффективность обработки составляет 75 ... 1900 мм3/мин при шероховатости обработанной поверхности 4 ... 0,2 мкм.
Электроискровым методом обрабатывают практически все токопроводящие материалы, но эффект эрозии при одних и тех же параметрах электрических импульсов различен. Зависимость интенсивности эрозии от свойств металлов называют электроэрозионной обрабатываемостью. Если принять электроэрозионную обрабатываемость стали за единицу, то для других металлов ее можно представить в следующих относительных единицах: твердые сплавы -0,5; титан - 0,6; никель - 0,8; медь - 1,1; латунь - 1,6; алюминий - 4; магний - 6.
ЭЛЕКТРОФИЗИЧЕСКИЕ И ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ
445
о +
=+—о+
о-
■=4—о +
в)
Рис. 7.2. Схемы электроискровой обработки:
а - прошивание отверстия; б - обработка фасонной полости штампа; в - прошивание отверстия по способу трепанации; г - прошивание отверстия с криволинейной осью; д - вырезание заготовки из листа; е - шлифование внутренней поверхности фильеры
Электроискровым методом целесообразно обрабатывать твердые сплавы, труднообрабатываемые металлы и сплавы, тантал, молибден и другие материалы.
Электроискровым методом (рис. 7.2) получают сквозные отверстия любой формы поперечного сечения (а), глухие отверстия и полости (б), фасонные отверстия и полости по способу трепанации (в), отверстия с криволинейными осями (г); вырезают заготовки из листа (д), выполняют плоское, круглое и внутреннее (е) шлифование, разрезают заготовки, клеймят детали.
Электроискровую обработку применяют для изготовления деталей штампов и пресс-форм, фильер, режущего инструмента, деталей топливной аппаратуры двигателей внутреннего сгорания, сеток и сит.
Электроискровую обработку применяют также для упрочнения поверхностного слоя металлов деталей машин, пресс-форм, режущего инструмента. Упрочнение состоит в том, что на поверхность изделий наносят тонкий слой какого-либо металла, сплава или композиционного
материала. Подобные покрытия повышают твердость, износостойкость, жаростойкость, эрозионную стойкость и другие характеристики изделий.
На ограниченных участках особо нагруженной поверхности детали можно проводить сложнейшие микрометаллургические процессы.
Из электроэрозионных станков с системами ЧПУ наибольшее распространение в промышленности имеют координатно-прошивочные, копировально-вырезные и универсальные копировалъно-прошивочные.
Координатно-прошивочные станки работают по позиционной системе ЧПУ, что позволяет автоматически по заданной программе устанавливать (позиционировать) заготовку относительно инструмента в необходимое положение. Обработку ведут профилированным инструментом. Во время обработки заготовка перемещений не имеет.
Копировально-вырезные станки работают по контурной системе ЧПУ. Обработку ведут непрофилированным инстру-
446
ЭЛЕКТРОФИЗИЧЕСКИЕ И ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ
Рис. 7.3. Схема работы копировально-вырезного станка с ЧПУ:
1 - катушка с проволокой; 2 - электродвигатель привода натяжения проволоки; 3 - генератор импульсов; 4 -проволока-инструмент; 5 - электродвигатель привода подачи проволоки; 6 и 7 - электродвигатели привода винта продольной и поперечной подач; 8 - рабочий стол станка; 9 - электронная следящая система; 10 - блок управления работой станка
ментом - бесконечным электродом-проволокой (рис. 7.3). Применяют медную, латунную, вольфрамовую, молибденовую проволоку диаметром 0,02 ... 0,3 мм. Программное устройство станков обеспечивает не только регулирование движений формообразования, но и регулирование технологического режима - напряжения на искровом промежутке. Особенность процесса вырезки состоит в наличии переменной эквидистанты, зависящей от ширины прорезаемого паза. Следовательно, устройства ЧПУ станков должны обеспечивать коррекцию эквидистанты. В станках такого типа системы ЧПУ обеспечивают управление по четырем и более координатным осям.
В универсальных копировально-про-шивочных электроэрозионных станках используют две системы ЧПУ: систему адаптивного управления с предварительным набором координат и режимов по программе и систему адаптивно-программного управления по трем координатным осям. В станках этого типа системы ЧПУ обеспечивают планетарное движение заготовки в следящем режиме, автоматиче-
ское позиционирование заготовки и автоматическую смену инструмента.
При электроимпульсной обработке используют электрические импульсы большой длительности (2 • 102 ... 105 мкс). Большие мощности импульсов, получаемых от электронных генераторов, обеспечивают высокую производительность процесса обработки. Применение генераторов и графитовых электродов, а также обработка на обратной полярности позволили уменьшить разрушение электродов.
Электроимпульсную обработку
(рис. 7.4) наиболее целесообразно применять при предварительной обработке штампов, турбинных лопаток, твердосплавных деталей, фасонных отверстий в деталях из коррозионно-стойких сталей и жаропрочных сплавов. В станках для электроимпульсной обработки широко используют различные системы программного управления. Высокоточная конструкция станков с чувствительными сервосистемами позволяет изготовлять детали сложной геометрической формы с высокой точностью.
Приборы автоматического переключения на разные подачу и глубину резания, управляемые системой ЧПУ, обеспечивают оптимальное использование электроэрозионных станков, так как в зависимости от хода процесса обработки режим работы согласуется с технологическими требованиями к деталям. Применяемые адаптивные системы программного управления позволяют своевременно определять отклонения в ходе обработки и устранять их. Изменения параметров процесса обработки вносятся в устройства,
Рис. 7.4. Схема электроимпульсной обработки: 1 - электродвигатель; 2 - импульсный генератор постоянного тока; 3 - инструмент-электрод; 4 - заготовка-электрод; 5 - ванна
ЭЛЕКТРОФИЗИЧЕСКИЕ И ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ
447
формирующие сигнал коррекции, что позволяет с помощью простых электродов изготовлять детали сложных геометрических форм, в частности полостей штампов.
Высокочастотную электроискровую обработку применяют для повышения точности и уменьшения шероховатости поверхностей, обработанных электроэрозионным методом. Метод основан на использовании электрических импульсов малой мощности при частоте 100 ... 150 кГц.
При высокочастотной электроискровой обработке (рис. 7.5) конденсатор С разряжается при замыкании первичной цепи импульсного трансформатора прерывателем, вакуумной лампой или тиратроном. Инструмент-электрод и заготовка включены во вторичную цепь трансформатора, что исключает возникновение дугового разряда.
Производительность метода в 30 ... 50 раз выше, чем при электроискровом методе, при значительном увеличении точности и уменьшении шероховатости поверхности. Износ инструмента незначителен.
Высокочастотный электроискровой метод применяют при обработке заготовок из твердых сплавов, так как он исключает структурные изменения и образование микротрещин в поверхностном слое материала обрабатываемой заготовки.
Электроконтактная обработка основана на локальном нагреве заготовки в месте контакта с электродом-инструментом и удалении размягченного или даже расплавленного металла из зоны обработки механическим способом: относительным
Рис. 7.5. Схема высокочастотной электроискровой обработки:
/ - инструмент-электрод; 2 - заготовка-электрод; 3 - импульсный трансформатор; 4 - прерыватель тока; 5 - выпрямитель
Рис. 7.6. Схема электроконтактной обработки плоской поверхности:
1 - обрабатываемая заготовка; 2 - инструмент-электрод: 3 - трансформатор
движением заготовки и инструмента. Источником теплоты в зоне обработки служат импульсные дуговые разряды. Электроконтактную обработку оплавлением рекомендуют для обработки крупных деталей из углеродистых и легированных сталей, чугуна, цветных сплавов, тугоплавких и специальных сплавов.
Метод применяют при зачистке отливок от заливов, отрезке литниковых систем и прибылей, зачистке проката из спецсплавов, черновом круглом наружном, внутреннем и плоском шлифовании корпусных деталей машин из труднообрабатываемых сплавов (рис. 7.6), шлифовании с одновременной поверхностной закалкой деталей из углеродистых сталей. Метод обработки не обеспечивает высокой точности и качества поверхности, но дает высокую производительность съема металла вследствие использования больших электрических мощностей.
3. ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ
Электрохимические методы обработки основаны на законах анодного растворения металлов при электролизе. При прохождении электрического тока через электролит на поверхности заготовки, включенной в электрическую цепь и являющейся анодом, происходят химические реакции, и поверхностный слой металла
448
ЭЛЕКТРОФИЗИЧЕСКИЕ И ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ
превращается в химическое соединение. Продукты электролиза переходят в раствор или удаляются механическим способом.
Производительность процессов зависит в основном от электрохимических свойств электролита, обрабатываемого то-копроводящего материала и плотности тока. Электрохимическое полирование (рис. 7.7) выполняют в ванне, заполненной электролитом. В зависимости от обрабатываемого материала электролитом служат растворы кислот или щелочей. Обрабатываемую заготовку подключают к аноду; электродом-катодом служит металлическая пластинка из свинца, меди, стали. Для большей интенсивности процесса электролит подогревают до температуры 40...80°С.
При подаче напряжения на электроды начинается процесс растворения металла заготовки-анода. Растворение происходит главным образом на выступах микронеровностей поверхности вследствие более высокой плотности тока на их вершинах. Кроме того, впадины между микровыступами заполняются продуктами растворения: оксидами или солями, имеющими пониженную электропроводимость. В результате избирательного растворения, т.е. большой скорости растворения выступов, микронеровности сглаживаются, и обрабатываемая поверхность приобретает металлический блеск. Электрополирование улучшает электрофизические характеристики деталей, так как уменьшается глубина микротрещин, поверхностный слой обрабатываемых поверхностей не деформируется, исключаются упрочнение и термические изменения структуры, повышается коррозионная стойкость.
Электрополирование позволяет одновременно обрабатывать партию заготовок по всей их поверхности. Этим методом получают поверхности деталей под гальванические покрытия, доводят рабочие поверхности режущего инструмента, полируют тонкие ленты и фольгу, очищают и декоративно отделывают детали.
Вид А
Рис. 7.7. Схема электрохимического полирования: / - ванна; 2 - обрабатываемая заготовка; 3 - пластина-электрод; 4 - электролит, 5 - микровыступ; 6 - продукт анодного растворения
Электрохимическую размерную обработку выполняют в струе электролита, прокачиваемого под давлением через межэлектродный промежуток, образуемый обрабатываемой заготовкой-анодом и инструментом-катодом .
Струя электролита, непрерывно подаваемого в межэлектродный промежуток, растворяет образующиеся на заготовке-аноде соли и удаляет их из зоны обработки. При этом способе одновременно обрабатывается вся поверхность заготовки, находящаяся под активным воздействием катода, что обеспечивает высокую производительность процесса. Участки заготовки, не требующие обработки, изолируют. Инструменту придают форму, обратную форме обрабатываемой поверхности. Формообразование поверхности происходит по методу копирования.
Импульсное рабочее напряжение способствует повышению точности обработанной поверхности заготовки. Точность обработки значительно повышается при уменьшении рабочего зазора между заготовкой и инструментом. Для контроля зазора используют высокочувствительные элементы, встраиваемые в следящую систему. Способ рекомендуют для обработки заготовок из высокопрочных сплавов, карбидных и труднообрабатываемых материалов. Отсутствие давления инструмента на заготовку позволяет обрабатывать нежесткие тонкостенные детали с высокими точностью и качеством обработанной поверхности.
ЭЛЕКТРОФИЗИЧЕСКИЕ И ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ
449
Рис. 7.8. Схема электрохимической размерной обработки: / - инструмент-электрод; 2 - заготовка; 3 - изолятор
Для электрохимической размерной обработки используют нейтральные электролиты. Наиболее широко применяют растворы солей NaCl, NaN03 и Na2S04.
На рис. 7.8 показаны схемы обработки заготовок в струе проточного электролита: турбинной лопатки (а), штампа (б) и схема прошивания сквозного цилиндрического отверстия (в).
Многие модели станков управляются системами ЧПУ. В процессе обработки система ЧПУ задает и контролирует величины напряжения и тока, постоянство рабочего зазора, скорость подачи электрода-инструмента, скорость потока и концентрацию электролита. Соблюдение этих параметров режима обеспечивает высокие точность и производительность обработки заготовок.
На модернизированных электрохимических или электроэрозионных станках осуществляют комбинированную обработку заготовок электроэрозионно-хими-ческим способом. Этот процесс обработки, основанный на сочетании анодного растворения и эрозионного разрушения металла, более производителен, чем электрохимический, но уступает по точности и шероховатости обработанной поверхности. Скорость обработки до 50 мм/мин; точность 0,2 ... 0,4мм; шероховатость Ra 10 ... 20 мкм.
При электроабразивной и электроалмазной обработке инструментом-электродом служит шлифовальный круг из аб-
разивного материала на электропроводящей связке (бакелитовая связка с графитовым наполнителем). Между анодом-заготовкой и катодом-шлифовальным кругом имеется межэлектродный зазор, образованный зернами, выступающими из связки. В зазор подается электролит. Продукты анодного растворения материала заготовки удаляются абразивными зернами; шлифовальный круг имеет вращательное движение, а заготовка - движения подачи, т.е. движения, соответствующие процессу механического шлифования.
Введение в зону резания ультразвуковых колебаний повышает производительность электроабразивного и электроалмазного шлифования в 2 ... 2,5 раза при значительном улучшении качества обработанной поверхности. Электроабразивные и электроалмазные методы применяют для отделочной обработки заготовок из труднообрабатываемых материалов, а также нежестких заготовок, так как силы резания здесь незначительны. При этих методах обработки прижоги обрабатываемой поверхности практически исключены.
При электроабразивной обработке (рис. 7.9) 85 ... 90 % припуска удаляется за счет анодного растворения и 15 ... 10 % -за счет механического воздействия. При электроалмазной обработке ~ 75 % припуска удаляется за счет анодного растворения и ~ 25 % - за счет механического воздействия алмазных зерен.
15-9503
450
ЭЛЕКТРОФИЗИЧЕСКИЕ И ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ
9-
Вид А увеличено
Рис. 7.9. Схема электроабразивного шлифования: 1 - заготовка; 2 - абразивные зерна; 3 - связка шлифовального круга
Рис. 7.10. Схема электрохимического
хонингования цилиндра:
1 - хонинговальная головка; 2 - заготовка цилиндра;
3 - изолятор; 4 - ванна; 5 - стол хонинговапьного
станка
Отделочную обработку поверхностей заготовок можно проводить электрохимическим хонингованием (рис. 7.10). Кинематика процесса соответствует хо-нингованию абразивными головками. Отличие состоит в том, что заготовку устанавливают в ванне, заполненной электролитом, и подключают к аноду. Хонинго-вальную головку подключают к катоду. Вместо абразивных брусков в головке установлены деревянные или пластмассовые. Продукты анодного растворения удаляются с обрабатываемой поверхности брусками при вращательном и возвратно-поступательном движениях хонинговаль-ной головки. Чтобы продукты анодного
растворения удалялись более активно, в электролит добавляют абразивные материалы. После того как удаление припуска с обрабатываемой поверхности закончено, осуществляют процесс "выхаживания" поверхности при выключенном электрическом токе для полного удаления анодной пленки с обработанной поверхности. Электрохимическое хонингование обеспечивает более низкую шероховатость поверхности, чем хонингование абразивными брусками. Поверхность получает зеркальный блеск. Производительность электрохимического хонингования в 4 ... 5 раз выше производительности механического хонингования.
4. АНОДНО-МЕХАНИЧЕСКАЯ ОБРАБОТКА
Анодно-механическая обработка основана на сочетании электротермических и электромеханических процессов и занимает промежуточное место между электроэрозионными и электрохимическими методами. Обрабатываемую заготовку подключают к аноду, а инструмент - к катоду. В зависимости от характера обработки и вида обрабатываемой поверхности в качестве инструмента используют металлические диски, цилиндры, ленты, проволоку. Обработку ведут в среде электролита, которым чаще всего служит водный раствор жидкого натриевого стекла. Заготовке и инструменту задают такие же движения, как при обычных методах механической обработки резанием. Электролит подают в зону обработки через сопло (рис. 7.11).
Рис. 7.11. Схема анодно-механической обработки плоской поверхности
ЭЛЕКТРОФИЗИЧЕСКИЕ И ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ
451
.^г£рде-
пр
6+
Рис. 7.12. Примеры анодно-механической обработки
При пропускании через раствор электролита постоянного электрического тока происходит процесс анодного растворения, как при электрохимической обработке. При соприкосновении инструмента-катода с микронеровностями обрабатываемой поверхности заготовки-анода происходит процесс электроэрозии, присущий электроискровой обработке. Кроме того, при пропускании электрического тока металл заготовки в точке контакта с инструментом разогревается так же, как при электроконтактной обработке, и материал заготовки размягчается. Продукты электроэрозии и анодного растворения удаляются из зоны обработки при относительных движениях инструмента и заготовки.
Анодно-механическим методом обрабатывают заготовки из всех токопроводя-щих материалов, высокопрочных и труднообрабатываемых металлов и сплавов, вязких материалов.
В станках для анодно-механической обработки используют системы ЧПУ. По программе осуществляется управление скоростями движений заготовки и инструмента, поддерживается постоянство зазора в рабочем пространстве между ними, задаются параметры электрического режима при переходе с черновой обработки на чистовую.
Анодно-механическим методом (рис. 7.12) разрезают заготовки на части (а), прорезают пазы и щели, обтачивают поверхности тел вращения (б), шлифуют плоские
поверхности и поверхности, имеющие форму тел вращения (в), полируют поверхности, затачивают режущий инструмент.
5. ХИМИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ
Сущность химической обработки заготовок состоит в направленном разрушении металлов и сплавов травлением их в растворах кислот и щелочей.
Перед травлением обрабатываемые поверхности заготовок тщательно очищают. Поверхности, не подлежащие обработке, защищают химически стойкими покрытиями (окрашивают лаками и красками, применяют химические и гальванические покрытия, светочувствительные эмульсии).
Подготовленные к обработке заготовки опускают в ванну с раствором кислоты или щелочи в зависимости от материала, из которого они изготовлены. Незащищенные поверхности заготовок подвергают травлению. Чтобы скорость травления была постоянной, а это позволяет определять время удаления припуска, концентрацию раствора поддерживают неизменной. В целях интенсификации процесса травления раствор подогревают до температуры 40 ... 80 °С. После обработки заготовки промывают, нейтрализуют, еще раз промывают горячим содовым раствором и удаляют защитные покрытия.
Химическим травлением получают местные утонения на нежестких заготовках, ребра жесткости, извилистые канавки и щели, "вафельные" поверхности, обраба-
15*
452
ЭЛЕКТРОФИЗИЧЕСКИЕ И ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ
тывают поверхности, труднодоступные для режущего инструмента.
Химико-механическим методом обрабатывают заготовки из твердых сплавов. Заготовки приклеивают специальными клеями к пластинам и опускают в ванну, заполненную суспензией, состоящей из раствора сернокислой меди и абразивного порошка. В результате обменной химической реакции на поверхностях заготовок выделяется рыхлая металлическая медь, а кобальтовая связка твердого сплава переходит в раствор в виде соли, освобождая тем самым зерна карбидов титана, вольфрама и тантала.
Медь вместе с карбидами сошлифовы-вается присутствующим в растворе абразивным порошком. В качестве инструмента используют чугунные диски или пластины. Карбиды удаляются в результате относительных движений инструмента и заготовок.
Химико-механическую обработку
применяют для разрезания и шлифования пластинок из твердого сплава, доводки твердосплавного инструмента.
6. УЛЬТРАЗВУКОВАЯ ОБРАБОТКА
Ультразвуковая обработка материалов -разновидность механической обработки -основана на разрушении обрабатываемого материала абразивными зернами под ударами инструмента, колеблющегося с ультразвуковой частотой. Источником энергии служат ультразвуковые генераторы тока с частотой 16 ... 30 кГц. Инструмент получает колебания от ультразвукового преобразователя с сердечником из магнито-стрикционного материала. Эффектом маг-нитострикции обладают никель, железо-никелевые сплавы (пермендюр), железо-алюминиевые сплавы (альфер), ферриты.
В сердечнике из магнитострикцион-ного материала при наличии электромагнитного поля домены* разворачиваются
Домены - ферромагнитные области в ферромагнитных кристаллах, в которых атомные магнитные моменты ориентированы параллельно.
в направлении магнитных силовых линий, что вызывает изменение размера поперечного сечения сердечника и его длины. В переменном магнитном поле частота изменения длины сердечника равна частоте колебаний тока. При совпадении частоты колебаний тока с собственной частотой колебаний сердечника наступает резонанс и амплитуда колебаний торца сердечника достигает 2 ... 10 мкм. Для увеличения амплитуды колебаний на сердечнике закрепляют резонансный волновод переменного поперечного сечения, что увеличивает амплитуду колебаний до 40 ... 60 мкм.
На волноводе закрепляют рабочий инструмент-пуансон. Под инструментом устанавливают заготовку и в зону обработки поливом или под давлением подают абразивную суспензию, состоящую из воды и абразивного материала. В качестве абразивных материалов используют карбид бора, карбид кремния, электрокорунд. Наибольшую производительность получают при использовании карбидов бора. Инструмент поджимают к заготовке силой 1 ...60Н.
Заготовку 3 помещают в ванну / под инструментом 4 (рис. 7.13). Инструмент устанавливают на волноводе 5, который закреплен в магнитострикционном сер-
\Ь=г±=Г
;э—I
■ '3
10
\\+
4 Щ
12.
11
Рис. 7.13. Схема ультразвукового станка
ЭЛЕКТРОФИЗИЧЕСКИЕ И ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ
453
дечнике 7, смонтированном в кожухе б, сквозь который прокачивают воду для охлаждения сердечника. Для возбуждения колебаний сердечника магнитострикцион-ного преобразователя служат генератор 8 ультразвуковой частоты и источник постоянного тока 9. Абразивную суспензию 2 подают под давлением по патрубку 10 насосом 11, забирающим суспензию из резервуара 12. Прокачивание суспензии насосом исключает оседание абразивного порошка на дно ванны и обеспечивает подачу в зону обработки абразивного материала.
Кавитационные явления в жидкости способствуют интенсивному перемещению абразивных зерен под инструментом, замене изношенных зерен новыми, а также разрушению обрабатываемого материала.
Ультразвуковым методом обрабатывают хрупкие твердые материалы: стекло, керамику, ферриты, кремний, кварц, драгоценные минералы, в том числе алмазы, твердые сплавы, титановые сплавы, вольфрам.
Метод используют для профилирования наружных поверхностей, гравирования, изготовления деталей сложной формы. Движениями подачи для указанных видов обработки являются вертикальная подача инструмента при обработке отвер-
стий и полостей, продольная подача заготовки при разрезании ее на части, продольная и поперечная подачи заготовки при разрезании ее по сложному контуру. Для управления движениями заготовки и вертикальной подачей инструмента используют системы программного управления.
Ультразвуковым методом обрабатывают (рис. 7.14) сквозные и глухие отверстия любой формы поперечного сечения (а, б), фасонные полости (в), разрезают заготовки на части (г), прошивают отверстия с криволинейными осями, нарезают резьбы.
Рабочие инструменты для обработки отверстий диаметром 0,5 ... 20 мм выполняют сплошными: диаметром 20 ... 100 мм -полыми (обработка по способу трепанации). Пазы долбят, а заготовки разрезают ножевидными пуансонами; внутренние полости обрабатывают пуансонами, форма торцов которых обратна форме обрабатываемой поверхности. Инструменты изготовляют из закаленных, но вязких материалов.
Точность размеров и шероховатость поверхностей, обработанных ультразвуковым методом, зависят от зернистости используемых абразивных материалов и соответствуют точности и шероховатости поверхностей, обработанных шлифованием.
а) б)
в) г)
Рис. 7.14. Схемы ультразвуковой обработки поверхностей заготовок
454
ЭЛЕКТРОФИЗИЧЕСКИЕ И ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ
Использование ультразвуковых колебаний оказалось эффективным и при обычных способах механической обработки (точении, фрезеровании и др.). Наложение ультразвуковых колебаний малых амплитуд (2 ... 5 мкм) на режущий инструмент (например, резец) в направлении главного движения резания существенно изменяет характер стружкообразования. Значительно снижается зона первичной и вторичной деформации срезаемого слоя металла, уменьшаются глубина и степень наклепа обработанной поверхности. Ультразвуковые колебания почти полностью устраняют процессы наростообразования. Все это приводит к улучшению условий резания, снижению сил трения и повышению качества поверхностного слоя.
Наиболее эффективным оказалось применение ультразвуковых колебаний малой амплитуды (2 ... 5 мкм) при обработке жаропрочных, тугоплавких, титановых сплавов и других материалов, характеризующихся плохой обрабатываемостью резанием.
Эффективным оказалось также применение ультразвуковых колебаний при ЭФЭХ методах обработки. Так, рациональное совмещение электрохимической и ультразвуковой обработки твердых сплавов позволяет в десятки раз повысить производительность труда и в несколько раз снизить износ инструмента и удельный расход электроэнергии.
7. ЛУЧЕВЫЕ МЕТОДЫ ОБРАБОТКИ
К лучевым методам формообразования поверхностей деталей машин относят электронно-лучевую и светолучевую (лазерную) обработку.
Электронно-лучевая обработка основана на превращении кинетической энергии направленного пучка электронов в тепловую. Высокая плотность энергии сфокусированного электронного луча позволяет обрабатывать заготовки за счет нагрева, расплавления и испарения материала с узколокального участка.
Схема установки для электроннолучевой обработки (электронная пушка) приведена на рис. 5.15.
При размерной обработке заготовок установка работает в импульсном режиме, что обеспечивает локальный нагрев заготовки. В зоне обработки температура достигает 6000 °С, а на расстоянии 1 мкм от пятна фокусировки не превышает 300 °С. Продолжительность импульсов и интервалы между ними подбирают так, чтобы за один цикл успел нагреться и испариться только металл, находящийся под непосредственным воздействием луча. Длительность импульсов составляет 10^* ... Ю-6 с, а частота 50 ... 6000 Гц.
Метод целесообразен при создании локальной концентрации высокой энергии, широком регулировании и управлении тепловыми процессами. Вакуумные среды позволяют обрабатывать заготовки из лег-коокисляющихся активных материалов. С помощью электронного луча можно наносить покрытия на поверхности заготовок в виде пленок толщиной от нескольких микрометров до десятых долей миллиметра.
Электронно-лучевой метод перспективен при обработке отверстий диаметром 1 мм ... 10 мкм, прорезании пазов, резке заготовок, изготовлении тонких пленок и сеток из фольги. Обрабатывают заготовки из труднообрабатываемых металлов и сплавов, а также из неметаллических материалов: рубина, керамики, кварца, полупроводниковых материалов.
Светолучевая (лазерная) обработка основана на тепловом воздействии светового луча высокой энергии на поверхность обрабатываемой заготовки. Источником светового излучения служит лазер - оптический квантовый генератор (ОКГ).
Энергия светового импульса ОКГ обычно невелика и составляет 20 ... 100 Дж, но она выделяется в миллионные доли секунды и сосредоточивается в луче диаметром -0,01 мм. В фокусе диаметр луча
ЭЛЕКТРОФИЗИЧЕСКИЕ И ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ
455
лазера составляет всего несколько микрометров, что обеспечивает температуру в зоне воздействия с металлом 6000 ... 8000 °С. В результате этого поверхностный слой материала заготовки мгновенно расплавляется и испаряется.
Лазерную обработку применяют для прошивания сквозных и глухих отверстий, разрезки заготовок на части, вырезания заготовок из листовых материалов, проре-зания пазов. Этим методом можно обрабатывать заготовки из любых материалов, включая самые твердые и прочные. Например, лазерную обработку отверстий применяют при изготовлении диафрагм для электронно-лучевых установок. Диафрагмы изготовляют из вольфрамовой, танталовой, молибденовой или медной фольги толщиной ~ 50 мкм при диаметре отверстия 20 ... 30 мкм. С помощью лазерного луча можно выполнить контурную обработку по аналогии с фрезерованием, т.е. обработку поверхностей по сложному периметру. Перемещениями заготовки относительно луча управляет система ЧПУ, что позволяет прорезать в заготовках сложные криволинейные пазы или вырезать из заготовок детали сложной геометрической формы.
8. ПЛАЗМЕННАЯ ОБРАБОТКА
Сущность обработки состоит в том, что плазму направляют на обрабатываемую поверхность (см. разд. V, гл. 2, п. 8).
Плазменным методом обрабатывают заготовки из любых материалов, выполняя прошивание отверстий, вырезку заготовок из листового материала, строгание, точение. При прошивании отверстий, разрезке и вырезке заготовок головку устанавливают
перпендикулярно к поверхности заготовки, при строгании и точении - под углом 40... 60°.
Принципиально новым методом изготовления деталей является плазменное напыление с целью получения заданных размеров. В камеру плазмотрона подаются порошкообразный конструкционный материал и одновременно инертный газ под высоким давлением. Под действием дугового разряда конструкционный материал плавится и переходит в состояние плазмы. Струя плазмы сжимается в плазмотроне плазмообразующим газом. Выходя из сопла, струя плазмы направляется на обрабатываемую заготовку. Системы вертикальной и горизонтальной разверток обеспечивают перемещение струи по поверхности обработки.
Плазменное напыление применяют и для получения деталей из напыляемого материала. Детали получаются в результате наращивания микрочастиц конструкционного материала в определенных местах экрана. Иногда вместо экрана используют тонкостенную заготовку, на которую направляется плазма, и происходит наращивание металла.
ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ
Какова физическая сущность электроэрозионных методов обработки материалов?
Каковы физико-механические свойства материала заготовки, обрабатываемой ультразвуком?
Назовите область применения электрохимической обработки.
4. Объясните физическую сущность эффек та магнитострикции.
5. Назовите области применения анодно- механической обработки.
РАЗДЕЛО ИЗГОТОВЛЕНИЕ ДЕТАЛЕЙ О ИЗ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ
Yandex.RTB R-A-252273-3- Глава I Современное металлургическое производство
- Глава II Производство чугуна
- Глава III Производство стали
- Глава IV Производство цветных металлов
- Глава I Общая характеристика и физико-механические основы обработки металлов давлением
- Глава II Изготовление машиностроительных профилей
- Глава III Изготовление поковок
- Глава IV Прогрессивные технологии
- Глава V
- Глава VI Технико-экономические показатели и
- Глава I Общая характеристика литейного производства
- Глава II Физические основы производства отливок
- Глава III Изготовлени формах
- Глава IV Изготовление отливок специальными способами литья
- 4.1. Технологические возможности способов изготовления отливок
- Глава V Изготовление отливок из различных сплавов
- 4.2. Химический состав никелевых жаропрочных сплавов и их длительная прочность
- Глава VI Технологичность конструкций литых деталей
- Глава I Физические основы получения сварного соединения
- Глава II
- Глава III
- Глава IV Лучевые способы сварки
- Глава V
- Глава VI
- Глава VII Нанесение износостойких и жаропрочных покрытий
- Глава VIII Технологические особенности сварки различных металлов и сплавов
- Глава IX
- Глава X Контроль сварных и паяных соединений
- Глава XI Технологичность
- Глава I Физико-механические основы обработки конструкционных материалов резанием
- 6.1. Обрабатываемость конструкционных материалов резанием
- Глава II Инструментальные материалы
- Глава III Металлорежущие станки
- 6.2. Классификация металлорежущих станков
- Глава IV
- Глава V
- Глава VI Обработка заготовок на станках сверлильно-расточной группы
- Глава VII Обработка заготовок на станках строгально-протяжной группы
- Глава VIII Обработка заготовок на станках фрезерной группы
- Глава IX Обработка заготовок
- Глава X Обработка заготовок
- Глава XI Методы отделочной обработки поверхностей
- Глава XII Методы обработки заготовок без снятия стружки
- Глава I Физико-технологические основы
- Глава II Изготовление изделий
- Глава III Изготовление деталей
- 8.1. Классификация композиционных порошковых материалов
- Глава IV Изготовление деталей
- Глава IV Изготовлени технических
- Глава VI Технологические особенности проектирования и изготовления деталей из композиционных материалов
- Раздел 1. Свойства металлов и сплавов, применяемых в
- Раздел 2. Производство черных
- Глава I. Современное металлургиче ское производство 25
- Глава III. Производство стали 32
- Глава III. Изготовление отливок в
- Глава IV. Изготовление отливок спе циальными способами литья 179
- Глава V. Изготовление отливок нз
- Глава VI. Технологичность конст рукций литых деталей 214
- Глава III. Металлорежущие станки ... 326
- Глава IV. Автоматизация производ ства в цехах с металлорежущим обо рудованием 335
- Глава V. Обработка заготовок иа станках токарной группы 345
- Глава VI. Обработка заготовок иа стайках сверлильно-расточной группы 361
- Глава VII. Обработка заготовок на станках строгально-протяжной группы 377
- Глава VIII. Обработка заготовок на станках фрезерной группы 386
- Глава IX. Обработка заготовок на зубообрабатывающнх станках 399
- Глава XI. Методы отделочной обра ботки поверхностей 421
- Глава XII. Методы обработки загото вок без снятия стружки 434
- Раздел 7. Электрофизические и электрохимические мето ды обработки 442