Глава II Изготовление машиностроительных профилей
1. ВИДЫ МАШИНОСТРОИТЕЛЬНЫХ ПРОФИЛЕЙ
Машиностроительные профили - длинномерные изделия (у которых один размер -длина - значительно больше поперечных размеров) с определенной формой поперечного сечения. Данные о группе профи-
лей, различающихся формой и размерами, называют сортаментом. Весь сортамент машиностроительных профилей, изготовляемых обработкой давлением и насчитывающий миллионы типоразмеров, можно разделить на четыре основные группы: сортовые профили, листовой металл, трубы и периодические профили.
ИЗГОТОВЛЕНИЕ МАШИНОСТРОИТЕЛЬНЫХ ПРОФИЛЕЙ
69
а)
Рис. 3.7. Примеры сортовых (а) и периодических (б) профилей
Сортовые профили (рис. 3.7, а) делят на профили простой геометрической формы (квадрат, круг, шестигранник, прямоугольник) и фасонные (швеллер, рельс, угловой, тавровый профили и т.д.).
Листовой металл из стали и цветных металлов используют в различных отраслях промышленности. В связи с этим листовую сталь, например, делят на автотракторную, трансформаторную, кровельную жесть и т.д. Расширяется производство листовой стали с оловянным, цинковым, алюминиевым и пластмассовым покрытиями. Кроме того, листовую сталь делят на толстолистовую (толщиной 4 ... 160 мм) и тонколистовую (толщиной менее 4 мм). Листы толщиной менее 0,2 мм называют фольгой.
Трубы делят на бесшовные и сварные. Бесшовные трубы используют в наиболее ответственных случаях - в трубопроводах, работающих под внутренним давлением, в агрессивных средах.
Периодические профили имеют периодически изменяющиеся форму и площадь поперечного сечения вдоль оси заготовки (рис. 3.7, б); их применяют как фасонную заготовку для последующей штамповки и как заготовку под окончательную механическую обработку.
Для изготовления машиностроительных профилей применяют различные виды обработки металлов давлением: прокатку, прессование, волочение, профилирование листового металла. Поэтому кроме группирования по приведенным геометрическим признакам профили разделяют и по способу их изготовления.
2. ПРОИЗВОДСТВО ПРОКАТАННЫХ ПРОФИЛЕЙ
Прокатке подвергают до 90 % всей выплавляемой стали и большую часть цветных металлов. При прокатке металл пластически деформируется вращающимися валками. Взаимное расположение валков и заготовки, форма и число валков могут быть различными. Кроме наиболее распространенного вида прокатки - продольной (рис. 3.6, б) выделяют еще два вида -поперечную и поперечно-винтовую.
При поперечной прокатке (рис. 3.8, а) валки 7, вращаясь в одном направлении, придают вращение заготовке 2 и деформируют ее. При поперечно-винтовой прокатке (рис. 3.8, б) валки 1 расположены под углом и сообщают заготовке 2 при деформировании вращательное и поступательное движения.
70
ОБРАБОТКА МЕТАЛЛОВ ДАВЛЕНИЕМ
Рис. 3.8. Схемы поперечной (а) и поперечно-винтовой (б) прокатки: / - валки; 2 - заготовка; 3 - оправка
Инструментом для прокатки являются валки, которые в зависимости от прокатываемого профиля могут быть гладкими (рис. 3.9, а), применяемыми для прокатки листов, лент и т.п.; ступенчатыми, например, для прокатки полосовой стали, и
ручьевыми (рис. 3.9, б) для получения сортового проката. Ручьем называют вырез на боковой поверхности валка, а совокупность двух ручьев образует полость, называемую калибром (рис. 3.9, в). Каждая пара ручьевых валков обычно образует несколько калибров. Валки состоят из рабочей части - бочки 1, шеек 2 и трефы 3. Шейки валков вращаются в подшипниках, которые у одного из валков 5 (рис. 3.9, г) могут перемещаться специальным нажимным механизмом 4 для изменения расстояния между валками и регулирования взаимного расположения их осей. Комплект прокатных валков со станиной называют рабочей клетью, которая вместе со шпинделем для привода валков 6, шестеренной клетью 7 для передачи вращения с одного на два вала, редуктором 8, муфтами и электродвигателем 9 образует рабочую линию стана.
а)
4 •^^ 5W^
Рис. 3.9. Валки и схема их привода в рабочей линии прокатного стана:
а - гладкий валок; б - ручьевой валок; в - открытый и закрытый калибры; г - схема рабочей линии прокатного
стана
ИЗГОТОВЛЕНИЕ МАШИНОСТРОИТЕЛЬНЫХ ПРОФИЛЕЙ
71
+-KUH
-(--+4- ^^ф^
Рис. 3.10. Схемы четырехвалковой (а) и многовалковой (б) прокатки
Рабочие клети по числу и расположению валков могут быть двухвалковые (см. рис. 3.6, б); четырехвалковые (рис. 3.10, а), у которых два валка рабочих и два опорных; многовалковые (рис. 3.10, б), у которых также два валка рабочих, а остальные опорные. Использование опорных валков позволяет применять рабочие валки малого диаметра, благодаря чему увеличивается вытяжка и снижаются деформирующие силы.
Прокатные станы могут быть одно-клетьевыми (с одной рабочей клетью) и многоклетьевыми.
Наиболее совершенные многоклетье-вые станы - непрерывные, у которых рабочие клети располагают последовательно одну за другой. Прокатываемая полоса через каждую клеть проходит только один раз, т.е. число рабочих клетей этих станов равно требуемому числу проходов полосы. Расстояние между клетями обычно меньше длины прокатываемой полосы, следовательно, она прокатывается одновременно в нескольких клетях. На непрерывных станах достигается высокая производительность при полном исключении ручного труда.
По назначению прокатные станы подразделяют на станы для производства полупродукта и станы для выпуска готового проката. К первой группе относят обжимные станы для прокатки слитков в полу-
продукт крупного сечения (блюминги, дающие заготовку для сортового проката, и слябинги, дающие заготовку для листового проката) и заготовочные - для получения полупродукта более мелкого сечения.
К станам для производства готового проката относят сортовые, листовые, трубные и специальные. Размер блюмингов, слябингов, заготовочных и сортовых станов характеризуется диаметром бочки валков (например, блюминг 1500; сортовой стан 350); размер листовых станов -длиной бочки (например, стан 3600), а размер трубопрокатных станов - наружным диаметром прокатываемых труб.
Исходной заготовкой при прокатке служат слитки: стальные массой до 60 т, из цветных металлов и их сплавов обычно массой до 10 т. При производстве сортовых профилей стальной слиток массой до 15 т в горячем состоянии прокатывают на блюминге, получая заготовки квадратного (или близкого к нему) сечения (от 140 х 140 до 450 х 450 мм), называемые блюмами. Блюмы поступают на заготовочные станы для прокатки заготовок требуемых размеров или сразу на станы для прокатки крупных профилей сортовой стали. На заготовочных и сортовых станах заготовка последовательно проходит через ряд калибров.
Разработку системы последовательных калибров, необходимых для получения того или иного профиля, называют калибровкой. Калибровка является сложным и ответственным процессом. Неправильная калибровка может привести не только к снижению производительности, но и к браку изделий. Чем больше разность в размерах поперечных сечений исходной заготовки и. конечного изделия и чем сложнее профиль последнего, тем большее число калибров требуется для его получения. В качестве примера на рис. 3.11 показана система из девяти калибров для получения рельсов. Число калибров может быть различным; например, при прокатке проволоки диаметром 6,5 мм их число достигает 21.
72
ОБРАБОТКА МЕТАЛЛОВ ДАВЛЕНИЕМ
Рис. 3.11. Калибры для прокатки рельсов
После прокатки профили режут на мерные длины, охлаждают, правят в холодном состоянии, термически обрабатывают, удаляют поверхностные дефекты.
Все более широкое распространение находит бесслитковая прокатка - получение проката непосредственно после непрерывного литья, минуя операции отливки слитков в изложницы, их предварительной обработки в обжимных прокатных станах или ковкой, а также ряд вспомогательных операций. В этом случае из плавильной печи жидкий металл заливают в ковш, а из него на агрегате непрерывного литья и прокатки металл поступает в кристаллизатор. Кристаллизатор и следующие за ним поддерживающие и подающие ролики обеспечивают непрерывное, равномерное поступление металла в рабочие клети прокатного стана. Таким способом получают стальную проволоку диаметром 8 мм, алюминиевую ленту толщиной 8 ... 12 мм.
При производстве листового проката стальной слиток массой до 50 т в горячем состоянии прокатывают на слябинге или блюминге, получая заготовку прямоугольного сечения с наибольшей толщиной 350 и шириной 2300 мм, называемую слябом.
В настоящее время вместо прокатанных заготовок широко применяют заготовки в виде слябов, полученных непре-
рывной разливкой. Слябы прокатывают большей частью на непрерывных станах горячей прокатки, состоящих из двух групп рабочих клетей - черновой и чистовой, расположенных друг за другом. Перед каждой группой клетей сбивают окалину в окалиноломателях. После прокатки полосу толщиной 1,2 ... 16 мм сматывают в рулон. К отделочным операциям производства горячекатаного листа относятся резка, травление, термическая обработка и др.
Исходным материалом для холодной прокатки листа толщиной менее 1,5 мм обычно служат горячекатаные рулоны. На современных станах холодной прокатки производят листовую сталь с минимальной толщиной 0,15 мм и ленты с минимальной толщиной 0,0015 мм. Современным способом холодной прокатки является рулонный. Предварительно горячекатаный лист очищают травлением в кислотах с последующей промывкой, прокатывают на одноклетьевых и многоклетьевых непрерывных четырехвалковых станах, а также на многовалковых станах. После холодной прокатки материал проходит отделочные операции: отжиг в защитных газах, нанесение в случае необходимости покрытий, разрезку на мерные листы и др.
При прокатке бесшовных труб первой операцией является прошивка - образование отверстия в слитке или круглой заготовке. Эту операцию выполняют в горя-
ИЗГОТОВЛЕНИЕ МАШИНОСТРОИТЕЛЬНЫХ ПРОФИЛЕЙ
73
чем состоянии на прошивных станах. Наибольшее применение получили прошивные станы с двумя бочкообразными валками, оси которых расположены под небольшим углом (5 ... 15°) друг к другу (см. рис. 3.8, в). Оба валка 1 вращаются в одном направлении, т.е. в данном случае используется принцип поперечно-винтовой прокатки. Благодаря такому расположению валков заготовка 2 получает одновременно вращательное и поступательное движения. При этом в металле возникают радиальные растягивающие напряжения, которые вызывают течение металла от центра в радиальном направлении, образуя внутреннюю полость, и облегчают прошивку отверстия оправкой 3, устанавливаемой на пути движения заготовки.
Последующую прокатку прошитой заготовки в трубу требуемых диаметра и толщины стенки производят на раскатных станах. Например, при наиболее распространенном методе трубу прокатывают на короткой оправке 2 в так называемом автоматическом двухвалковом стане (рис. 3.12). Валки / образуют последовательно расположенные круглые калибры, зазор между закрепленной на длинном стержне оправкой 2 и ручьями валков определяет толщину стенки трубы. Для устранения неравномерности толщины стенки по сечению и рисок после раскатки производят обкатку труб в обкатных станах, рабочая клеть которых по конструкции аналогична
клети прошивного стана. Затем для получения заданного диаметра трубы прокатывают в калибровочном многоклетьевом стане продольной прокатки без оправки, а при необходимости получения труб диаметром менее 80 мм - еще и в редуцион-ных непрерывных станах с рабочими клетями аналогичной конструкции.
Сварные трубы изготовляют из плоской заготовки - ленты (называемой штрипсом) - или из листов, ширина которых соответствует длине (или половине длины) окружности трубы. Процесс изготовления сварной трубы включает следующие основные операции: гибку плоской заготовки в трубу, сварку кромок, уменьшение (редуцирование) диаметра полученной трубы. Для сварки чаще применяют следующие способы: печную сварку, сварку сопротивлением и дуговую под флюсом. При производстве труб печной сваркой ленту, размотанную с рулона, правят, нагревают в узкой длинной (до 40 м) газовой печи до температуры 1300 ... 1350 °С и постепенно гнут в трубу на непрерывном прокатном стане (рис. 3.13). Стан состоит из 6 ... 12 рабочих клетей, в которых валки образуют круглые калибры. При прокатке в калибрах прижимаемые друг к другу кромки, дополнительно нагретые до высокой температуры обдувкой кислородом, свариваются. Выходящую из стана трубу разрезают специальной пилой на куски требуемой длины и далее калибруют на калибровочном стане. Этим способом изготовляют трубы самой низкой стоимости из низкоуглеродистой стали (Ст2кп) диаметром 10... 114 мм.
ПФП
гьи
imj
IWJ
Рис. 3.12. Схема прокатки труб на автоматическом стане
Рис. 3.13. Последовательность процесса свертывания полосы в трубу в шести клетях непрерывного стана
74
ОБРАБОТКА МЕТАЛЛОВ ДАВЛЕНИЕМ
Рис. 3.14. Схема прокатки шаров в стане поперечно-винтовой прокатки
Электросваркой можно получать трубы большого диаметра (до 2500 мм) с тонкой стенкой (до 0,5 мм) из легированных сталей.
При производстве труб сваркой сопротивлением ленты или полосы гнут в холодном состоянии в трубу на непрерывных формовочных станах (см. рис. 3.13). При выходе из формовочного стана трубная заготовка поступает на трубоэлектро-сварочный стан, где кромки трубы прижимаются друг к другу двумя парами вертикальных валков и одновременно свариваются роликовыми электродами. После сварки трубу калибруют, разрезают на части.
Дуговой сваркой под флюсом изготовляют трубы с прямыми и спиральными швами. В первом случае подготовленный лист гнут в трубу на листогибочных валковых станах или на прессах, затем сваривают, причем швы накладывают снаружи и изнутри трубы. При получении труб со спиральным швом лента, разматываемая с рулона, сворачивается по спирали в трубу, а затем сваривается по кромкам.
Трубы с более тонкой стенкой, высокими качеством поверхности и точностью размеров получают на станах холодной прокатки труб различных типов, а также волочением. В качестве заготовки в этом случае применяют горячекатаные трубы.
Периодические профили в основном изготовляют поперечной и поперечно-винтовой прокаткой. На станах поперечно-винтовой прокатки получают не только периодические профили, но и заготовки
шаров, роликов подшипников качения (рис. 3.14). Валки 2 и 4 вращаются в одну сторону. Ручьи валков соответствующей формы сделаны по винтовой линии. Заготовка 1 при прокатке получает вращательное и поступательное движения; от вылета из валков она предохраняется центрирующими упорами 3.
В промышленности для получения заготовок различных деталей широко применяют созданные под руководством акад. А. И. Целикова станы поперечно-винтовой прокатки.
3. ПРОИЗВОДСТВО ПРЕССОВАННЫХ ПРОФИЛЕЙ
При прессовании металл выдавливается из замкнутой полости через отверстие, соответствующее сечению прессуемого профиля (см. рис. 3.6, г). Этим процессом изготовляют не только сплошные профили, но и полые (рис. 3.15). В этом случае в заготовке необходимо предварительно получить сквозное отверстие. Часто отверстие прошивают на том же прессе. В процессе прессования при движении пуансона 1 с пресс-шайбой 5 металл заготовки 2 выдавливается в зазор между матрицей 3 и иглой 4. Прессование по рассмотренным схемам называется прямым. Значительно реже применяют обратное прессование, схема деформирования которого аналогична схеме обратного выдавливания (см. рис. 3.46, а).
Рис. 3.15. Схема прессования полого профиля (а) и примеры профилей, полученных прессованием (б)
ИЗГОТОВЛЕНИЕ МАШИНОСТРОИТЕЛЬНЫХ ПРОФИЛЕЙ
75
Исходной заготовкой при прессовании служит слиток или прокат. Состояние поверхности заготовки оказывает значительное влияние на качество поверхности и точность прессованных профилей. Поэтому во многих случаях заготовку предварительно обтачивают на станке; после нагрева поверхность заготовки тщательно очищают от окалины.
Прессованием изготовляют изделия разнообразного сортамента из цветных металлов и сплавов, в том числе прутки диаметром 3 ... 250 мм, трубы диаметром 20 ... 400 мм со стенкой толщиной 1,5 ... 12 мм и другие профили (см. рис. 3.15, б). Из углеродистых сталей 20 ... 50, конструкционных 30ХГСА, 40ХН, коррозион-ностойких 12Х18Н10Т и других высоколегированных сталей прессуют трубы с внутренним диаметром 30 ... 160 мм со стенкой толщиной 2 ... 10 мм, профили с полкой толщиной 2 ... 2,5 мм и линейными размерами поперечных сечений до 200 мм.
При прессовании металл подвергается всестороннему неравномерному сжатию и поэтому имеет весьма высокую пластичность. Коэффициент, характеризующий степень деформации и определяемый как отношение площади сечения заготовки к площади сечения прессуемого профиля, при прессовании составляет 10 ... 50.
Прессованием можно обрабатывать такие специальные стали, цветные металлы и их сплавы, которые ввиду низкой пластичности (особенно в литом состоянии) другими видами обработки давлением деформировать невозможно или затруднительно.
Прессованием можно получать профили сложных форм, которые не могут быть получены другими видами обработки металлов давлением (в частности, прокаткой). Точность прессованных профилей выше, чем прокатанных.
К недостаткам прессования следует отнести большие отходы металла: весь металл не может быть выдавлен из контейнера, и в нем остается так называемый
пресс-остаток, который после окончания прессования отрезается от полученного профиля. Масса пресс-остатка может достигать 40 % массы исходной заготовки (при прессовании труб большого диаметра).
Схема всестороннего сжатия металла при прессовании приводит к значительным давлениям, действующим на инструмент. Поэтому инструмент для прессования работает в исключительно тяжелых условиях, испытывая кроме действия больших давлений действие высоких температур. Износ инструмента особенно велик при прессовании сталей и других труднодеформируемых сплавов из-за высоких сопротивления деформированию и температуры горячей обработки. Инструмент для прессования изготовляют из высококачественных инструментальных сталей и жаропрочных сплавов. Износ инструмента уменьшают применением специальных смазочных материалов; например, при прессовании труднодеформируемых сталей и сплавов используют смазочные шайбы, укладываемые на матрицу под заготовку, изготовленные из крупки доменного шлака, связанной жидким стеклом. Основным оборудованием для прессования являются вертикальные или горизонтальные гидравлические прессы.
4. ВОЛОЧЕНИЕ
МАШИНОСТРОИТЕЛЬНЫХ
ПРОФИЛЕЙ
Исходными заготовками для волочения служат прокатанные или прессованные прутки и трубы из стали, цветных металлов и их сплавов.
Волочение труб можно выполнять без оправки (для уменьшения внешнего диаметра) и с оправкой (для уменьшения внешнего диаметра и толщины стенки). На рис. 3.16, а показана схема волочения трубы / на короткой удерживаемой оправке 3. В этом случае профиль полученной трубы определяется зазором между волокой 2 и оправкой 3.
76
ОБРАБОТКА МЕТАЛЛОВ ДАВЛЕНИЕМ
Рис. 3.16. Схема волочения трубы (а) и примеры профилей, полученных волочением (б)
Поскольку тянущая сила, приложенная к заготовке, необходима не только для деформирования металла, но и для преодоления сил трения металла об инструмент, эти силы трения стараются уменьшить применением смазки и полированием отверстия в волоке.
Обычно для получения необходимых профилей требуется деформация, превышающая допустимую за один проход, поэтому применяют волочение через ряд постепенно уменьшающихся по диаметру отверстий. Но, поскольку волочение осуществляют в условиях холодной деформации, металл упрочняется. Для восстановления пластичности упрочненный волочением металл подвергают промежуточному отжигу.
Волочением обрабатывают различные марки стали, цветные металлы и их сплавы. Сортамент изделий, изготовляемых волочением, очень разнообразен: проволока диаметром 0,002 ... 5 мм и фасонные профили, примеры которых показаны на рис. 3.16, б (призматические и фасонные направляющие; сегментные, призматические и фасонные шпонки; шлицевые валики; опорные призмы, ножи и т.д.). Волочением калибруют стальные трубы диаметрами от капиллярных до 200 мм, стальные прутки диаметрами 3 ... 150 мм.
Поскольку волочение производят в условиях холодной деформации, оно обеспечивает точность размеров (стальная проволока диаметром 1 ... 1,6 мм имеет допуск 0,02 мм), низкую шероховатость поверхности, получение очень тонкостенных профилей.
Рис. 3.17. Схема барабанного волочильного стана
Волоку изготовляют из инструментальных сталей, металлокерамических сплавов и технических алмазов (для волочения проволоки диаметром менее 0,2 мм). Волочение производят на барабанных и цепных волочильных станах. Барабанные станы (рис. 3.17) служат для волочения проволоки, труб небольшого диаметра, наматываемых в бунты. Исходную заготовку в виде бунта укладывают на барабан /. Предварительно заостренный конец проволоки пропускают через отверстие волоки 2 и закрепляют на барабане 3, который приводится во вращение от электродвигателя через редуктор и зубчатую передачу
Кроме станов для однократного волочения, один из которых показан на рис. 3.17, существуют станы для многократного волочения. Последние имеют до 20 барабанов с установленными перед каждым из них волоками. На цепных станах тянущее устройство совершает прямолинейное возвратно-поступательное движение. Такие станы применяют для волочения прутков и труб, которые нельзя наматывать в бунты.
ПРОИЗВОДСТВО ГНУТЫХ ПРОФИЛЕЙ
При изготовлении горячей прокаткой фасонных профилей невозможно получить стенки толщиной менее 2 ... 3 мм. В то же время по требуемой прочности в конструкциях такая толщина нередко завышена. Кроме того, горячекатаные профили имеют технологические напуски (внутренние
ИЗГОТОВЛЕНИЕ МАШИНОСТРОИТЕЛЬНЫХ ПРОФИЛЕЙ
77
радиусы скругления, уклоны), увеличивающие их массу. Фасонные тонкостенные профили, легкие, но жесткие, весьма сложной конфигурации и большой длины можно получать методом профилирования листового материала в холодном состоянии. Процесс профилирования прокаткой на профилегибочных станах заключается в постепенном изменении формы сечения плоской заготовки до требуемого профиля при последовательном прохождении полосы или ленты через несколько пар (6 -20 и более) вращающихся фигурных роликов. При данном методе площадь поперечного сечения и толщина исходной полосы или ленты практически не изменяются, т.е. происходит только последовательная гибка полосы или ленты в поперечном сечении.
На рис. 3.18, а показано последовательное изменение плоской заготовки до требуемого профиля на профилегибочном стане. Число пар роликов, необходимое для изготовления того или иного профиля, зависит от сложности его конфигурации. Заготовкой при изготовлении гнутых профилей может быть лента или полоса из стали или цветных металлов толщиной 0,3 ... 10 мм. Форма гнутых профилей (рис. 3.18, б) может быть и относительно простой (профиль открытого типа) и весьма сложной (профили полузакрытого и закрытого типов, профили с наполнителем).
Указанным способом получают большое количество изделий для машиностроения, автомобильной и авиационной промышленности, строительных конструкций.
а) б)
Рис. 3.18. Последовательность профилирования на профилегибочном стане (а) и примеры гнутых
профилей (б):
1,3,5-8- номера пар роликов (пары роликов 2 и 4 на рисунке не показаны)
ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ
Какие факторы обусловливают точность тонколистового проката?
Каким способом можно получить цельный профиль в форме трубы с внутренними ребрами?
Почему у прокатанных фасонных профилей (швеллер, двутавр и др.) полки всегда имеют уклоны?
Какова последовательность изготовления стальной проволоки диаметром, например, 0,5 мм?
Какую трубу - бесшовную или сварную -целесообразней использовать в рамной конструкции (например, в раме велосипеда)?
Каким видом обработки металлов давлением предпочтительно произвести небольшое количество (несколько тонн) профиля простой геометрической формы, но нестандартного размера?
Почему прессование стали производят в горячем состоянии?
8. Как различаются свойства стального прутка до и после волочения?
78 ОБРАБОТКА МЕТАЛЛОВ ДАВЛЕНИЕМ
Yandex.RTB R-A-252273-3- Глава I Современное металлургическое производство
- Глава II Производство чугуна
- Глава III Производство стали
- Глава IV Производство цветных металлов
- Глава I Общая характеристика и физико-механические основы обработки металлов давлением
- Глава II Изготовление машиностроительных профилей
- Глава III Изготовление поковок
- Глава IV Прогрессивные технологии
- Глава V
- Глава VI Технико-экономические показатели и
- Глава I Общая характеристика литейного производства
- Глава II Физические основы производства отливок
- Глава III Изготовлени формах
- Глава IV Изготовление отливок специальными способами литья
- 4.1. Технологические возможности способов изготовления отливок
- Глава V Изготовление отливок из различных сплавов
- 4.2. Химический состав никелевых жаропрочных сплавов и их длительная прочность
- Глава VI Технологичность конструкций литых деталей
- Глава I Физические основы получения сварного соединения
- Глава II
- Глава III
- Глава IV Лучевые способы сварки
- Глава V
- Глава VI
- Глава VII Нанесение износостойких и жаропрочных покрытий
- Глава VIII Технологические особенности сварки различных металлов и сплавов
- Глава IX
- Глава X Контроль сварных и паяных соединений
- Глава XI Технологичность
- Глава I Физико-механические основы обработки конструкционных материалов резанием
- 6.1. Обрабатываемость конструкционных материалов резанием
- Глава II Инструментальные материалы
- Глава III Металлорежущие станки
- 6.2. Классификация металлорежущих станков
- Глава IV
- Глава V
- Глава VI Обработка заготовок на станках сверлильно-расточной группы
- Глава VII Обработка заготовок на станках строгально-протяжной группы
- Глава VIII Обработка заготовок на станках фрезерной группы
- Глава IX Обработка заготовок
- Глава X Обработка заготовок
- Глава XI Методы отделочной обработки поверхностей
- Глава XII Методы обработки заготовок без снятия стружки
- Глава I Физико-технологические основы
- Глава II Изготовление изделий
- Глава III Изготовление деталей
- 8.1. Классификация композиционных порошковых материалов
- Глава IV Изготовление деталей
- Глава IV Изготовлени технических
- Глава VI Технологические особенности проектирования и изготовления деталей из композиционных материалов
- Раздел 1. Свойства металлов и сплавов, применяемых в
- Раздел 2. Производство черных
- Глава I. Современное металлургиче ское производство 25
- Глава III. Производство стали 32
- Глава III. Изготовление отливок в
- Глава IV. Изготовление отливок спе циальными способами литья 179
- Глава V. Изготовление отливок нз
- Глава VI. Технологичность конст рукций литых деталей 214
- Глава III. Металлорежущие станки ... 326
- Глава IV. Автоматизация производ ства в цехах с металлорежущим обо рудованием 335
- Глава V. Обработка заготовок иа станках токарной группы 345
- Глава VI. Обработка заготовок иа стайках сверлильно-расточной группы 361
- Глава VII. Обработка заготовок на станках строгально-протяжной группы 377
- Глава VIII. Обработка заготовок на станках фрезерной группы 386
- Глава IX. Обработка заготовок на зубообрабатывающнх станках 399
- Глава XI. Методы отделочной обра ботки поверхностей 421
- Глава XII. Методы обработки загото вок без снятия стружки 434
- Раздел 7. Электрофизические и электрохимические мето ды обработки 442