Глава I Общая характеристика и физико-механические основы обработки металлов давлением
1. СУЩНОСТЬ ОБРАБОТКИ МЕТАЛЛОВ ДАВЛЕНИЕМ
Обработка давлением - технологические процессы формоизменения за счет пластической деформации в результате воздействия на деформируемое тело (заготовку) внешних сил.
Если при упругих деформациях деформируемое тело полностью восстанавливает исходные форму и размеры после снятия внешних сил, то при пластических деформациях изменение формы и размеров, вызванное действием внешних сил, сохраняется и после прекращения действия этих сил. Упругая деформация характеризуется смещением атомов относительно друг друга на величину, меньшую межатомных расстояний, и после снятия внешних сил атомы возвращаются в исходное положение. При пластических деформациях атомы смещаются относительно друг друга на расстояния, большие межатомных, и после снятия внешних сил не возвращаются в свое исходное положение, а занимают новые положения равновесия.
Для начала перехода атомов в новые положения равновесия необходимы определенные действующие напряжения, значения которых зависят от межатомных сил и характера взаимного расположения атомов (типа кристаллической решетки, наличия и расположения примесей, формы и размеров зерен поликристалла и т.п.).
Так как сопротивление смещению атомов в новые положения изменяется непропорционально смещению, то при пластических деформациях линейная связь между напряжениями и деформациями обычно отсутствует.
Напряжения, вызывающие смещение атомов в новые положения равновесия, могут уравновешиваться только силами межатомных взаимодействий. Поэтому под действием деформирующих сил деформация состоит из упругой и пластической составляющих, причем упругая составляющая исчезает при снятии деформирующих сил, а пластическая составляющая приводит к остаточному изменению формы и размеров тела.
В новые положения равновесия атомы могут переходить в результате смещения в определенных параллельных плоскостях, без существенного изменения расстояний между этими плоскостями. При этом атомы не выходят из зоны силового взаимодействия и деформация происходит без нарушения сплошности металла, плотность которого практически не изменяется. Скольжение одной части кристаллической решетки относительно другой происходит по плоскостям наиболее плотного размещения атомов (плоскостям скольжения). В реальных металлах кристаллическая решетка имеет линейные дефекты (дислокации), перемещение которых облегчает скольжение.
60
ОБРАБОТКА МЕТАЛЛОВ ДАВЛЕНИЕМ
Величина пластической деформации не безгранична, при определенных ее значениях может начаться разрушение металла.
Однако, создавая наиболее благоприятные условия деформирования, в настоящее время достигают значительного пластического формоизменения даже у материалов, имеющих в обычных условиях невысокую пластичность.
Существенные преимущества обработки металлов давлением по сравнению с обработкой резанием - возможность значительного уменьшения отхода металла, а также повышения производительности труда, поскольку в результате однократного приложения деформирующей силы можно значительно изменить форму и размеры деформируемой заготовки. Кроме того, пластическая деформация сопровождается изменением физико-механических свойств металла заготовки, что можно использовать для получения деталей с наилучшими эксплуатационными свойствами (прочностью, жесткостью, высокой износостойкостью и т.д.) при наименьшей их массе. Эти и другие преимущества обработки металлов давлением (см. ниже) способствуют неуклонному росту ее удельного веса в металлообработке. Совершенствование технологических процессов обработки металлов давлением, а также применяемого оборудования позволяет расширять номенклатуру деталей, изготовляемых обработкой давлением, увеличивать диапазон деталей по массе и размерам, а также повышать точность размеров полуфабрикатов, получаемых обработкой металлов давлением.
2. ВЛИЯНИЕ ОБРАБОТКИ ДАВЛЕНИЕМ НА СТРУКТУРУ И СВОЙСТВА МЕТАЛЛА
Изменение структуры и свойств металла при обработке давлением определяется температурно-скоростными условиями деформирования, в зависимости от которых различают холодную и горячую деформации.
а) б)
Рис. 3.1. Схемы изменения микроструктуры металла при деформации: а - холодной; 6 - горячей
Холодная деформация характеризуется изменением формы зерен, которые вытягиваются в направлении наиболее интенсивного течения металлов (рис. 3.1, а). При холодной деформации формоизменение сопровождается изменением механических и физико-химических свойств металла. Это явление называют упрочнением (наклепом). Изменение механических свойств состоит в том, что при холодной пластической деформации по мере ее увеличения возрастают характеристики прочности, в то время как характеристики пластичности снижаются. Металл становится более твердым, но менее пластичным. Упрочнение возникает вследствие поворота плоскостей скольжения, увеличения искажений кристаллической решетки в процессе холодного деформирования (накопления дислокаций у границ зерен).
Изменения, внесенные холодной деформацией в структуру и свойства металла, не необратимы. Они могут быть устранены, например, с помощью термической обработки (отжигом). В этом случае происходит внутренняя перестройка, при которой за счет дополнительной тепловой энергии, увеличивающей подвижность атомов, в твердом металле без фазовых превращений из множества центров растут новые зерна, заменяющие собой вытянутые, деформированные зерна. Так как в равномерном температурном поле скорость роста зерен по всем направлениям одинакова, то новые зерна, появляющиеся взамен деформированных, имеют пример-
ФИЗИКО-МЕХАНИЧЕСКИЕ ОСНОВЫ ОБРАБОТКИ МЕТАЛЛОВ ДАВЛЕНИЕМ
61
но одинаковые размеры по всем направлениям.
Явление зарождения и роста новых равноосных зерен взамен деформированных, вытянутых, происходящее при определенных температурах, называется рекристаллизацией. Для чистых металлов рекристаллизация начинается при абсолютной температуре, равной 0,4 абсолютной температуры плавления металла. Рекристаллизации протекает с определенной скоростью, причем время, требуемое для рекристаллизации, тем меньше, чем выше температура нагрева деформированной заготовки.
При температурах ниже температуры начала рекристаллизации наблюдается явление, называемое возвратом. При возврате (отдыхе) форма и размеры деформированных, вытянутых зерен не изменяются, но частично снимаются остаточные напряжения. Эти напряжения возникают из-за неоднородного нагрева или охлаждения (при литье и обработке давлением), неоднородности распределения деформаций при пластическом деформировании и т.д. Остаточные напряжения создают системы взаимно уравновешивающихся сил и находятся в заготовке, не нагруженной внешними силами. Снятие остаточных напряжений при возврате почти не изменяет механические свойства металла, но влияет на некоторые его физико-химические свойства. Так, в результате возврата значительно повышаются электрическая проводимость, сопротивление коррозии холоднодеформированного металла.
Формоизменение заготовки при температуре выше температуры рекристаллизации сопровождается одновременным протеканием упрочнения и рекристаллизации.
Горячей деформацией называют деформацию, характеризующуюся таким соотношением скоростей деформирования и рекристаллизации, при котором рекристаллизация успевает произойти во всем объеме заготовки и микроструктура после обработки давлением оказывается равноосной, без следов упрочнения (рис. 3.1, б).
Чтобы обеспечить условия протекания горячей деформации, приходится с увеличением ее скорости повышать температуру нагрева заготовки (для увеличения скорости рекристаллизации).
Если металл по окончании деформации имеет структуру, не полностью рекри-сталлизованную, со следами упрочнения, то такая деформация называется неполной горячей деформацией. Неполная горячая деформация приводит к получению неоднородной структуры, снижению механических свойств и пластичности, поэтому обычно нежелательна.
При горячей деформации сопротивление деформированию примерно в 10 раз меньше, чем при холодной деформации, а отсутствие упрочнения приводит к тому, что сопротивление деформированию (предел текучести) незначительно изменяется в процессе обработки давлением. Этим обстоятельством объясняется в основном то, что горячую обработку применяют для изготовления крупных деталей, так как при этом требуются меньшие деформирующие силы (менее мощное оборудование).
Следует учитывать, что при обработке давлением заготовок малых размеров (малой толщины) трудно выдержать необходимые температурные условия ввиду быстрого их охлаждения на воздухе и от контакта с более холодным инструментом.
При горячей деформации пластичность металла выше, чем при холодной. Поэтому горячую деформацию целесообразно применять при обработке труднодефор-мируемых, малопластичных металлов и сплавов, а также заготовок из литого металла (слитков). В то же время при горячей деформации окисление заготовки более интенсивно (на поверхности образуется слой окалины), что ухудшает качество поверхности и точность получаемых размеров.
Холодная деформация без нагрева заготовки позволяет получать большую точность размеров и лучшее качество поверхности по сравнению с обработкой давлением при достаточно высоких тем-
62
ОБРАБОТКА МЕТАЛЛОВ ДАВЛЕНИЕМ
пературах. Отметим, что обработка давлением без специального нагрева заготовки позволяет сократить продолжительность технологического цикла, облегчает использование средств механизации и автоматизации и повышает производительность труда.
Влияние холодной деформации на свойства металла можно использовать для улучшения эксплуатационных свойств деталей. Управлять изменением свойств в требуемом направлении и на желаемую величину можно выбором рационального сочетания холодной и горячей деформаций, а также числа и режимов термических обработок в процессе изготовления детали.
Исходной заготовкой для начальных процессов обработки металлов давлением (прокатки, прессования) является слиток. Кристаллическое строение слитка неоднородно (кристаллиты различных размеров и форм). Кроме того, в нем имеются пористость, газовые пузыри и т. п. Обработка давлением слитка при нагреве его до достаточно высоких температур приводит к деформации кристаллитов и частичной заварке пор и раковин. Таким образом, при обработке давлением слитка может увеличиться и плотность металла.
В результате деформации кристаллитов и последующей рекристаллизации металл получает мелкозернистое строение, т.е. размеры зерен после рекристал-
лизации исчисляются в сотых или десятых долях миллиметра, причем эти размеры примерно одинаковы по всем направлениям (равноосная структура).
Если слиток загрязнен неметаллическими включениями, обычно располагающимися по границам кристаллитов, то в результате обработки давлением неметаллические включения вытягиваются в виде волокон по направлению наиболее интенсивного течения металла. Эти волокна выявляются травлением и видны невооруженным глазом в форме так называемой волокнистой макроструктуры (рис. 3.2, а). Полученная в результате обработки давлением литого металла волокнистая макроструктура не может быть разрушена ни термической обработкой, ни последующей обработкой давлением. Последняя в зависимости от направления пластического течения металла может изменить лишь направление и форму волокон макроструктуры.
Металл с явно выраженной волокнистой макроструктурой характеризуется анизотропией (векториальностью) механических свойств. При этом показатели прочности (предел текучести, временное сопротивление и др.) в разных направлениях отличаются незначительно, а показатели пластичности (относительное удлинение, ударная вязкость и др.) вдоль волокон выше, чем поперек их.
а) Рис. 3.2. Макроструктура металла после
б) в) г)
давлением
ФИЗИКО-МЕХАНИЧЕСКИЕ ОСНОВЫ ОБРАБОТКИ МЕТАЛЛОВ ДАВЛЕНИЕМ
63
Так как направление волокон зависит от направления течения металла при деформировании заготовки в готовой детали желательно предусмотреть благоприятное с точки зрения ее эксплуатации расположение волокон. При этом общие рекомендации следующие: необходимо, чтобы наибольшие растягивающие напряжения, возникающие в деталях в процессе работы, были направлены вдоль волокон, а если какой-либо элемент этой детали работает на срез, то желательно, чтобы перерезывающие силы действовали поперек волокон; необходимо, чтобы волокна подходили к наружным поверхностям детали по касательной и не перерезались наружными поверхностями детали.
Выполнение этих требований не только повышает надежность детали (в том числе и при динамическом нагружении), но и улучшает другие эксплуатационные характеристики, например сопротивление истиранию.
Возможность воздействия обработкой давлением на расположение волокон, а следовательно, и на свойства деталей можно иллюстрировать следующим примером. В зубчатом колесе, изготовленном резанием из прутка (рис. 3.2, б), растягивающие напряжения, возникающие при изгибе зуба 1 под действием сопряженного колеса, направлены поперек волокон, что понижает их надежность. При горячей штамповке зубчатого колеса из полосы (рис. 3.2, в) волокна по-разному ориентированы в различных зубьях относительно наибольших растягивающих напряжений: в зубе / - вдоль волокон, а в зубе 2 - поперек. Следовательно, зубья оказываются неравнопрочными.
При изготовлении зубчатого колеса осадкой (рис. 3.2, г) из отрезка прутка круглого сечения волокна получают почти радиальное направление. В этом случае все зубья равнопрочны, а наибольшие растягивающие напряжения, возникающие при изгибе, направлены вдоль волокон.
3. ВЛИЯНИЕ УСЛОВИИ ДЕФОРМИРОВАНИЯ НА ПРОЦЕСС ОБРАБОТКИ МЕТАЛЛОВ ДАВЛЕНИЕМ
Процесс пластического деформирования металла при обработке давлением может быть представлен графической зависимостью действующих давлений от соответствующих пластических деформаций (рис. 3.3). При холодной деформации растет величина необходимых для этого напряжений и уравновешивающих их в каждый момент времени внешних сил, прикладываемых к деформируемому телу (кривая 3 на рис. 3.3). Эта зависимость ограничена не только по оси абсцисс величиной пластической деформации, которой можно достичь без разрушения (предельной деформации), но часто и по оси ординат величиной максимально допустимых давлений на инструмент. Характер зависимости давления - деформации и их предельные значения зависят от свойств металла и условий деформирования.
С повышением температуры увеличиваются значения максимального относительного удлинения и максимально достижимых деформаций, а сопротивление деформированию уменьшается (рис. 3.4).
Рис. 3.3. Зависимость давления от степени пластической деформации в процессах обработки металлов давлением: / - горячая деформация с низкой скоростью;
- горячая деформация с более высокой скоростью;
- холодная деформация
64
ОБРАБОТКА МЕТАЛЛОВ ДАВЛЕНИЕМ
бв,МПа S,Vo
О 200 W0 600 800 1000 t°C
Рис. 3.4. Изменение ов и 5 малоуглеродистой стали в зависимости от температуры
Таким образом, при деформировании стали, нафетой, например, до температуры 1200 °С, можно достичь большего формоизменения при меньшей приложенной силе, чем при деформировании ненафетой стали. Все металлы и сплавы имеют тенденцию к увеличению пластичности и уменьшению сопротивления деформированию при повышении температуры в случае выполнения ряда требований, предъявляемых к процессу нафева. Так, каждый металл должен быть нафет до вполне определенной максимальной температуры. Если нафеть, например, сталь до температуры, близкой к температуре плавления, наступает пережог, выражающийся в появлении хрупкой пленки между зернами металла вследствие окисления их фаниц. При этом происходит полная потеря пластичности. Пережог исправить нельзя, пережженный металл может быть отправлен только на переплавку.
Ниже зоны температур пережога находится зона температур перегрева. Явление перефева заключается в резком росте размеров зерен. Вследствие того что крупнозернистой первичной кристаллизации (аустенит), как правило, соответствует крупнозернистая вторичная кристаллизация (ферриг + перлит или перлит + цементит), механические свойства изделия, полученного обработкой давлением из пере-фетой заготовки, оказываются низкими.
Брак по перефеву в большинстве случаев можно исправить отжигом. Однако для некоторых сталей (например, хромони-келевых) исправление перефетого металла сопряжено со значительными трудностями и простой отжиг оказывается недостаточным.
Максимальную температуру нафева, т.е. температуру начала горячей обработки давлением, следует назначать такой, чтобы не было пережога и перефева. В процессе обработки нафетый металл обычно остывает, соприкасаясь с более холодным инструментом и окружающей средой.
Заканчивать горячую обработку давлением следует также при вполне определенной температуре, ниже которой пластичность вследствие упрочнения (рекристаллизация не успевает произойти) падает и в изделии возможно образование трещин. Но при высоких температурах заканчивать деформирование нецелесообразно, особенно для сплавов, не имеющих фазовых превращений. В этом случае после деформирования зерна успевают вырасти и получается крупнозернистая структура, характеризующаяся низкими механическими свойствами.
Каждый металл и сплав имеют свой строго определенный температурный интервал горячей обработки давлением; например, алюминиевый сплав АК4 470 ... 350 °С; медный сплав БрАЖМц 900 ... 750 °С; титановый сплав ВТ8 1100 ... 900 °С. Для углеродистых сталей температурный интервал нафева можно определить по диафамме состояния (см. разд. 1). С увеличением содержания углерода он сужается от 1300 ... 700 °С для малоуглеродистой стали до 1080 ... 870 °С для стали У13 (рис. 3.5).
Заготовка должна быть равномерно на-фета по всему объему до требуемой температуры. Разность температур по сечению заготовки приводит к тому, что вследствие теплового расширения между более нафетыми поверхностными слоями металла и менее нафетыми внутренними
ФИЗИКО-МЕХАНИЧЕСКИЕ ОСНОВЫ ОБРАБОТКИ МЕТАЛЛОВ ДАВЛЕНИЕМ
65
*?■ '«я |
%^2Sz^-^ |
llllll |
%/2222£2^ |
|
1300
ffOO
900
700
500
0 0,2 0Л 0,6 0,8 1 C,%
Рис. З.5. Температурный интервал нагрева углеродистых сталей в зависимости от содержания углерода
слоями возникают напряжения. Последние тем больше, чем больше разность температур по сечению заготовки, и могут возрасти настолько, что в центральной зоне с растягивающими напряжениями при низкой пластичности металла образуются трещины. Разность температур по сечению увеличивается с повышением скорости нагрева, поэтому существует допустимая скорость нагрева. Наибольшее время требуется для нагрева крупных заготовок из высоколегированных сталей из-за их более низкой теплопроводности. Например, время нагрева слитка массой ~ 40 т из легированной стали составляет более 24 ч.
Однако с увеличением времени нагрева увеличивается окисление поверхности металла, так как при высоких температурах металл активнее химически взаимодействует с кислородом воздуха. В результате на поверхности, например, стальной заготовки образуется окалина -слой, состоящий из оксидов железа: Fe203, Fe302, FeO. Кроме потерь металла с окалиной последняя, вдавливаясь в поверхность заготовки при деформировании, вызывает необходимость увеличения припусков на механическую обработку. Окалина увеличивает износ деформирующего инструмента, так как ее твердость значительно больше твердости горячего металла.
Яри высоких температурах на поверхности стальной заготовки интенсивно окисляется не только железо, но и углерод; происходит так называемое обезуглероживание. Толщина обезуглероженного слоя иногда достигает 1,5 ... 2 мм.
Для уменьшения окисления заготовки нагревают в нейтральной или восстановительной атмосфере.
Влияние температуры металла на практике нельзя рассматривать в отрыве от скоростных условий деформирования. Как следует из определения горячей деформации, скорость деформирования при ней должна обеспечить полное протекание процесса рекристаллизации, скорость которой зависит от температуры. С увеличением скорости деформации при постоянной температуре увеличивается влияние упрочнения над рекристаллизационным разупрочнением и давления при той же деформации возрастают (см. рис. 3.3). Поэтому для некоторых особо чувствительных к увеличению скорости деформирования сплавов, например алюминиевых и магниевых, горячее деформирование рекомендуется осуществлять на тихоходных гидравлических прессах, а не на молотах.
В процессе деформирования необходимая для этого энергия превращается в тепловую. При деформировании с небольшими скоростями выделяющаяся по плоскостям скольжения теплота рассеивается и не оказывает заметного воздействия на процесс деформирования. Однако при деформации ненагретой заготовки с очень большими скоростями (например, 20 м/с и более) выделяющаяся при деформировании теплота может давать эффект увеличения пластичности и снижения сопротивления деформированию.
Большое влияние на величину предельной деформации оказывает схема напряженного состояния. Наибольшая предельная деформация достигается при отсутствии растягивающих напряжений и увеличении сжимающих. В этих условиях (схема неравномерного всестороннего
3 - 9503
66
ОБРАБОТКА МЕТАЛЛОВ ДАВЛЕНИЕМ
сжатия) даже хрупкие материалы типа мрамора могут получать пластические деформации. Однако при реализации такой схемы с большим значением суммарного сжимающего напряжения (гидростатического давления) возрастают действующие на деформирующий инструмент давления, которые ограничиваются его экономически оправданной стойкостью.
Русский ученый С. И. Губкин показал, что пластичность при прочих равных условиях определяется схемой напряженного состояния, различной в разных процессах и операциях обработки давлением. Вследствие этого для каждых операций, металла и температурно-скоростных условий существуют свои определенные предельные деформации.
4. КЛАССИФИКАЦИЯ ПРОЦЕССОВ ОБРАБОТКИ МЕТАЛЛОВ ДАВЛЕНИЕМ
Пластическое деформирование в обработке металлов давлением осуществляется при различных схемах напряженного и деформированного состояний, при этом исходной заготовкой могут быть объемное тело, пруток, лист. По назначению процессы обработки металлов давлением группируют следующим образом:
для получения изделий постоянного поперечного сечения по длине (прутков, проволоки, лент, листов), применяемых в строительных конструкциях или в качестве заготовок для последующего изготовления из них деталей обработкой резанием с использованием предварительного пластического формоизменения или без него; основными разновидностями таких процессов являются прокатка, прессование и волочение;
для получения деталей или заготовок (полуфабрикатов), имеющих приближенно формы и размеры готовых деталей и требующих обработки резанием лишь для придания им окончательных размеров и получения поверхности заданного качества; основными разновидностями таких процессов являются ковка и штамповка.
Основными схемами деформирования объемной заготовки можно считать сжатие между плоскостями инструмента, ротационное обжатие вращающимися валками, затекание металла в полость инструмента, выдавливание металла из полости инструмента и волочение, при котором в качестве заготовки может быть использован только пруток.
Процессы деформирования листовой заготовки - операции листовой штамповки - объединяются в две группы: разделительные операции (отрезка, вырубка, пробивка, надрезка) и формоизменяющие (гибка, вытяжка, формовка и др.).
Сжатие между плоскостями инструмента - осадка - характеризуется свободным пластическим течением металла между поверхностями инструмента (рис. 3.6, а). Схема напряженного состояния - всестороннее неравномерное сжатие из-за наличия сил трения на контакте между инструментом и заготовкой. С уменьшением коэффициента трения и увеличением относительной высоты заготовки схема напряженного состояния приближается к линейному сжатию. Однако относительная высота (отношение высоты заготовки к ее меньшему поперечному размеру) не может быть больше предельного значения, равного 2,5 ... 3, из-за опасности потери устойчивости и изгиба.
Схема свободного течения металла при сжатии между плоскостями инструмента лежит в основе операций ковки: осадки, протяжки, раскатки и др., а также имеет место во многих способах объемной штамповки.
Ротационное обжатие вращающимися валками (рис. 3.6, б) обусловливается силами трения между вращающимся инструментом и заготовкой, благодаря которым последняя перемещается в зазоре между валками, одновременно деформируясь. Эта схема лежит в основе прокатки; кроме того, она может быть использована в ряде способов получения поковок: поперечно-клиновой прокатке, вальцовке, раскатке.
ФИЗИКО-МЕХАНИЧЕСКИЕ ОСНОВЫ ОБРАБОТКИ МЕТАЛЛОВ ДАВЛЕНИЕМ
67
Рис. 3.6. Основные схемы деформирования в обработке металлов давлением
Для осуществления процесса необходима определенная величина сил трения. На заготовку со стороны валков действуют нормальные силы N и сила трения Т (рис. 3.6, б). Спроецировав эти силы на горизонтальную ось, можно записать условие захвата металла валками (по отношению к одному валку, так как система симметрична):
N sina < 7cosa.
Угол а называется углом захвата. Выразив силу трения как Т =fN, где/- коэффициент трения, и подставив это выражение в условие захвата, получим sina </cosa или f> tga. Таким образом, для осуществления захвата металла валками необходимо, чтобы коэффициент трения между валками и заготовкой был больше тангенса угла захвата.
В процессе деформирования уменьшается толщина заготовки при одновременном увеличении ее длины и ширины. Деформацию заготовки обычно определяют относительным обжатием, %:
е„ = (Яо-Я,)100/Я0,
где Н0 и #i - высота заготовки соответственно до и после деформации.
Площадь поперечного сечения заготовки всегда уменьшается. Поэтому для определения деформации (особенно, когда
обжатие по сечению различно) используют показатель, называемый вытяжкой.
ц = /i//0 = Fg/Fi,
где /0 и FQ - первоначальные длина и площадь поперечного сечения; ^ и F\ - те же величины после прокатки.
Вытяжка обычно составляет 1,1 ... 1,6 за проход, но может быть и больше.
Затекание металла в полость инструмента (рис. 3.6, в) - схема деформирования, являющаяся сутью объемной штамповки. Металл заготовки заполняет полость специального инструмента - штампа, называемую его ручьем, приобретая его форму и размеры. Течение металла ограничивается поверхностями полостей (а также выступов), изготовленных в отдельных частях штампа.
Затеканию металла в полость штампа препятствуют силы трения; схема напряженного состояния - всестороннее неравномерное сжатие. Чем больше отношение глубины к ширине полости, тем большее давление должно быть приложено к металлу для ее заполнения.
Выдавливание металла (рис. 3.6, г) через отверстие заданного сечения в матрице 1 происходит вследствие его сжатия в замкнутой полости, образуемой контейнером 3, матрицей 1 и пуансоном 4, поэтому схема неравномерного всестороннего сжа-
з»
68
ОБРАБОТКА МЕТАЛЛОВ ДАВЛЕНИЕМ
тия реализуется здесь полнее, чем в других процессах. Длина выдавленной части относится к перемещению пуансона 4, как площадь поперечного сечения исходной заготовки 2 к площади выдавленной части. Чем больше это отношение (так называемая величина вытяжки), тем больше значение суммарного сжимающего напряжения, развиваемого в металле при выдавливании. Схема выдавливания характерна для таких видов обработки металлов давлением, как прессование, горячая и холодная штамповка.
Волочение (рис. 3.6, д) заключается в протягивании заготовки 2 через сужающееся отверстие в инструменте, называемом волокой 7; площадь поперечного сечения заготовки уменьшается и получает форму поперечного сечения отверстия волоки, а следовательно, длина (из условия постоянства объема при пластической деформации) увеличивается.
Вследствие того что к заготовке при волочении приложена тянущая сила, в отверстии волоки (очаге деформации) и после выхода из нее металл испытывает растягивающие напряжения. Но если в очаге деформации, в котором действуют и сжимающие напряжения со стороны инструмента, металл пластически деформируется, то на выходящем из волоки конце прутка пластическая деформация недопустима. В противном случае поперечное сечение прутка изменяется или он разрывается. Поэтому величина деформации за
один проход ограничена, отношение площадей поперечного сечения заготовки и деформированной части обычно не превышает 1,5.
ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ
Как отличаются между собой свойства (см. рис. 3.1) листа из одного сплава, полученного холодной и горячей прокаткой?
Почему деформацию свинца при комнатной температуре следует считать горячей?
Какой из двух болтов одинаковых размеров и материала будет более работоспособным: с головкой, полученной пластическим деформированием или выточенной из цилиндрической заготовки?
4. Изобразите графическую зависимость напряжение - пластическая деформация, ха рактерную для холодной деформации, и пока жите, как будет выглядеть этот график при увеличении температуры деформирования; на ложении всестороннего сжимающего давления.
Почему при осадке заготовки с квадратным поперечным сечением ее боковые грани становятся по мере деформации криволинейными, а поперечное сечение приближается к кругу?
В каком из основных процессов пластического деформирования трение между инструментом и заготовкой в наибольшей степени играет отрицательную роль, ограничивая возможности формоизменения, а в каком - положительную роль?
Какая из основных схем пластического деформирования наиболее благоприятна для формоизменения малопластичных сплавов?
- Глава I Современное металлургическое производство
- Глава II Производство чугуна
- Глава III Производство стали
- Глава IV Производство цветных металлов
- Глава I Общая характеристика и физико-механические основы обработки металлов давлением
- Глава II Изготовление машиностроительных профилей
- Глава III Изготовление поковок
- Глава IV Прогрессивные технологии
- Глава V
- Глава VI Технико-экономические показатели и
- Глава I Общая характеристика литейного производства
- Глава II Физические основы производства отливок
- Глава III Изготовлени формах
- Глава IV Изготовление отливок специальными способами литья
- 4.1. Технологические возможности способов изготовления отливок
- Глава V Изготовление отливок из различных сплавов
- 4.2. Химический состав никелевых жаропрочных сплавов и их длительная прочность
- Глава VI Технологичность конструкций литых деталей
- Глава I Физические основы получения сварного соединения
- Глава II
- Глава III
- Глава IV Лучевые способы сварки
- Глава V
- Глава VI
- Глава VII Нанесение износостойких и жаропрочных покрытий
- Глава VIII Технологические особенности сварки различных металлов и сплавов
- Глава IX
- Глава X Контроль сварных и паяных соединений
- Глава XI Технологичность
- Глава I Физико-механические основы обработки конструкционных материалов резанием
- 6.1. Обрабатываемость конструкционных материалов резанием
- Глава II Инструментальные материалы
- Глава III Металлорежущие станки
- 6.2. Классификация металлорежущих станков
- Глава IV
- Глава V
- Глава VI Обработка заготовок на станках сверлильно-расточной группы
- Глава VII Обработка заготовок на станках строгально-протяжной группы
- Глава VIII Обработка заготовок на станках фрезерной группы
- Глава IX Обработка заготовок
- Глава X Обработка заготовок
- Глава XI Методы отделочной обработки поверхностей
- Глава XII Методы обработки заготовок без снятия стружки
- Глава I Физико-технологические основы
- Глава II Изготовление изделий
- Глава III Изготовление деталей
- 8.1. Классификация композиционных порошковых материалов
- Глава IV Изготовление деталей
- Глава IV Изготовлени технических
- Глава VI Технологические особенности проектирования и изготовления деталей из композиционных материалов
- Раздел 1. Свойства металлов и сплавов, применяемых в
- Раздел 2. Производство черных
- Глава I. Современное металлургиче ское производство 25
- Глава III. Производство стали 32
- Глава III. Изготовление отливок в
- Глава IV. Изготовление отливок спе циальными способами литья 179
- Глава V. Изготовление отливок нз
- Глава VI. Технологичность конст рукций литых деталей 214
- Глава III. Металлорежущие станки ... 326
- Глава IV. Автоматизация производ ства в цехах с металлорежущим обо рудованием 335
- Глава V. Обработка заготовок иа станках токарной группы 345
- Глава VI. Обработка заготовок иа стайках сверлильно-расточной группы 361
- Глава VII. Обработка заготовок на станках строгально-протяжной группы 377
- Глава VIII. Обработка заготовок на станках фрезерной группы 386
- Глава IX. Обработка заготовок на зубообрабатывающнх станках 399
- Глава XI. Методы отделочной обра ботки поверхностей 421
- Глава XII. Методы обработки загото вок без снятия стружки 434
- Раздел 7. Электрофизические и электрохимические мето ды обработки 442