Глава III Изготовление поковок
машиностроительных деталей
1. ВИДЫ ПОКОВОК
Поковкой называют заготовку детали, полученную ковкой или штамповкой. Огромное разнообразие машиностроительных деталей и, соответственно, такое же разнообразие форм и размеров поковок, сплавов, характера производства обусловливают существование различных способов изготовления поковок.
Поковки могут быть сгруппированы по признакам, определяющим технологию их изготовления. Такими признаками являются масса, конфигурация, марка сплава и тип производства.
Масса поковок, которая может быть от сотен граммов до сотен тонн, определяет тип заготовки, вид деформации и схему деформирования.
Исходными заготовками для получения поковок являются слитки или сортовой прокат круглого, квадратного или прямоугольного сечения; так как размеры поперечного сечения последнего ограничены, для получения поковок большой массы (от нескольких сотен килограммов) в качестве заготовки используют слитки.
Поскольку при горячей деформации давления, необходимые для формоизменения нагретого металла, ниже, чем при холодной деформации, последняя используется для поковок малой массы (ориентировочно менее 1 кг).
Изготовление поковок может осуществляться по схемам свободного пластического течения между поверхностями инструмента или затекания металла в полость штампа (возможно, в сочетании с процессами выдавливания, ротационного обжатия). Для заполнения полости штампа необходимо давление, значительно превышающее давление при свободном пластическом течении металла. Вследствие этого поковки большой массы затруднительно изготовлять штамповкой. Для тя-
желых поковок (массой ориентировочно 1 ... 250 т) единственно возможным способом изготовления является ковка - вид горячей обработки металлов давлением, при котором деформирование производят последовательно на отдельных участках заготовки. Металл свободно течет в стороны, не ограниченные рабочими поверхностями инструмента, в качестве которого применяют плоские или фигурные (вырезные) бойки, а также различный подкладной инструмент. Таким образом, при ковке используют универсальный (годный для изготовления различных поковок) инструмент, в то время как для штамповки требуется специальный инструмент -штамп, изготовление которого при небольшой партии одинаковых поковок экономически невыгодно. Поэтому в единичном и мелкосерийном производствах ковка обычно экономически более целесообразна. Чем больше партия одинаковых поковок, тем более специализированным может быть технологический процесс их изготовления, так как применение более сложного, а значит, более дорогого, инструмента и специального оборудования экономически оправдано.
Представить общую достаточно строгую классификацию форм поковок трудно ввиду их большого разнообразия. Упрощенно поковки можно разделить, например, на такие группы: осесимметричные типа дисков и колес (рис. 3.19, 1, а), втулок и колец (рис. 3.19, 1, б); осесимметричные типа стаканов и втулок, размер которых вдоль оси больше поперечных (рис. 3.19, 2); осесимметричные типа валов и осей (рис. 3.19, 3); длина которых вдоль оси больше поперечных размеров; неосесимметричные типа рычагов, вилок, крюков (рис. 3.19, 4) с меньшим или большим соотношением габаритных размеров; к этой многочисленной группе относятся поковки гаечных ключей,
ИЗГОТОВЛЕНИЕ ПОКОВОК МАШИНОСТРОИТЕЛЬНЫХ ДЕТАЛЕЙ
79
"> Jlfez-.
ее—э
-еВ88^Е)э-
0 * э- «Ж й
ч&
е2
eg
I
ш
#=эфэ
Рис. 3.19. Виды машиностроительных поковок
шатунов, звеньев гусениц тракторов, лопаток турбин, крюков грузоподъемных механизмов, коленчатых валов и др.
Кроме такого разделения поковок по типу деталей при технологических расчетах по конфигурации поковки делят на группы сложности. Критерием сложности поковки считают отношение объемов поковки и описанной вокруг нее простой геометрической фигуры - призмы или цилиндра.
2. КОВКА
Процесс ковки состоит из чередования в определенной последовательности основных и вспомогательных операций. Каждая операция определяется характером деформирования и применяемым инструментом.
К основным операциям ковки относятся осадка, протяжка, прошивка, отрубка, гибка.
Осадка - операция уменьшения высоты заготовки при увеличении площади ее поперечного сечения (см. рис. 3.6, а). Осаживают заготовки между бойками или подкладными плитами (рис. 3.20, а).
Разновидностью осадки является высадка, при которой металл осаживают лишь на части длины заготовки (рис. 3.20, б).
Протяжка - операция удлинения заготовки или ее части за счет уменьшения площади поперечного сечения (рис. 3.21, а). Протяжку производят последовательными ударами или нажатиями на отдельные участки заготовки, примыкающие один к другому, с подачей заготовки вдоль оси протяжки и поворотами ее на 90° вокруг этой оси. При каждом нажатии уменьшается высота сечения, увеличиваются ширина и длина заготовки. Общее увеличение длины равно сумме приращений длин за каждое нажатие, а уширение
Рис. 3.20. Схемы осадки в кольцах (а) и высадки (б)
80
ОБРАБОТКА МЕТАЛЛОВ ДАВЛЕНИЕМ
•^
Рис. 3.21. Схемы протяжки и ее разновидностей
по всей длине одинаково. Если заготовку повернуть на 90° вокруг горизонтальной оси и повторить протяжку, то уширение, полученное в предыдущем проходе, устраняется, а длина заготовки снова увеличивается. Чем меньше подача при каждом нажатии, тем интенсивнее удлинение. Однако при слишком малой подаче могут получиться зажимы (рис. 3.21, б).
Протягивать можно плоскими
(рис. 3.21, а) и вырезными (рис. 3.21, в) бойками. При протяжке на плоских бойках в центре изделия могут возникнуть (особенно при протяжке круглого сечения) значительные растягивающие напряжения, которые приводят к образованию осевых трещин. При протяжке с круга на круг в вырезных бойках силы, направленные с четырех сторон к осевой линии заготовки, способствуют более равномерному течению металла и устранению возможности образования осевых трещин.
Деформация при протяжке может быть выражена величиной у к о в к и:
y = FJFK,
где F„ - начальная (большая) площадь поперечного сечения; FK - конечная (мень-
шая) площадь поперечного сечения после протяжки.
Очевидно, чем больше уковка, тем лучше прокован металл, тем выше его механические свойства. Поэтому протяжку применяют не только для получения поковок с удлиненной осью (валы, рычаги, тяги и т.п.), но и в чередовании с осадкой -для большей уковки металла заготовки.
Протяжка имеет ряд разновидностей.
Разгонка - операция увеличения ширины части заготовки за счет уменьшения ее толщины (рис. 3.21, г).
Протяжка с оправкой - операция увеличения длины пустотелой заготовки за счет уменьшения толщины ее стенок (рис. 3.21, д). Протяжку выполняют в вырезных бойках (или нижнем вырезном 3 и верхнем плоском 2) на слегка конической оправке /. Протягивают в одном направлении - к расширяющемуся концу оправки, что облегчает ее удаление из поковки.
Раскатка на оправке - операция одновременного увеличения наружного и внутреннего диаметров кольцевой заготовки за счет уменьшения толщины ее стенок (рис. 3.21, е). Заготовка 5 опирается внутренней поверхностью на цилиндрическую оправку б, устанавливаемую концами на подставках 7, и деформирует-
ИЗГОТОВЛЕНИЕ ПОКОВОК МАШИНОСТРОИТЕЛЬНЫХ ДЕТАЛЕЙ
81
ся между оправкой и узким длинным бойком 4. После каждого нажатия заготовку поворачивают относительно оправки.
Протяжку с оправкой и раскатку на оправке часто применяют совместно. Вначале раскаткой уничтожают бочкообраз-ность предварительно осаженной и прошитой заготовки и доводят ее внутренний диаметр до требуемых размеров. Затем протяжкой с оправкой уменьшают толщину стенок и увеличивают до заданных размеров длину поковки.
Прошивка - операция получения полостей в заготовке за счет вытеснения металла (рис. 3.22, а). Прошивкой можно получить сквозное отверстие или углубление (глухая прошивка). Инструментом для прошивки служат прошивни (рис. 3.22, в) сплошные и пустотелые; последними прошивают отверстия большого диаметра (400 ... 900 мм). При сквозной прошивке сравнительно тонких поковок применяют подкладные кольца (рис. 3.22, б). Более толстые поковки прошивают с двух сторон без подкладного кольца (рис. 3.22, а). Диаметр прошивня выбирают не более 1/2 ... 1/3 наружного диаметра заготовки; при большем диаметре прошивня заготовка
значительно искажается. Прошивка сопровождается отходом (выдрой).
Отрубка - операция отделения части заготовки по незамкнутому контуру путем внедрения в заготовку деформирующего инструмента - топора (рис. 3.22, г). Отрубку применяют для получения из заготовок большой длины нескольких коротких, для удаления излишков металла на концах поковок, а также прибыльной и донной частей слитков и т.п. Инструмент для отрубки - топоры различной формы (рис. 3.22, д).
Гибка - операция придания заготовке изогнутой формы по заданному контуру (рис. 3.22, е). Этой операцией получают угольники, скобы, крючки, кронштейны и т.п. Гибка сопровождается искажением первоначальной формы поперечного сечения заготовки и уменьшением его площади в зоне изгиба, называемым утяжкой. Для компенсации утяжки в зоне изгиба заготовке придают увеличенные поперечные размеры. При гибке возможно образование складок по внутреннему контуру и трещин по наружному. Во избежание этого явления по заданному углу изгиба подбирают соответствующий радиус скругления.
Рис. 3.22. Схемы операций ковки:
а - двусторонняя прошивка; 6 - сквозная прошивка; в - прошивни; г - отрубка; д - топоры; е - гибка;
ж - штамповка в подкладных штампах
82
ОБРАБОТКА МЕТАЛЛОВ ДАВЛЕНИЕМ
Перечисленными операциями ковки трудно изготовить поковки с относительно сложной конфигурацией. Поэтому при изготовлении небольшой партии таких поковок применяют так называемую штамповку в подкладных штампах (рис. 3.22, ж). Подкладной штамп может состоять из одной или двух частей, в которых имеется по-. лость с конфигурацией поковки или ее отдельного участка. В подкладных штампах можно изготовлять головки гаечных ключей, головки болтов, диски со ступицей, втулки с буртом и другие поковки.
Чертеж поковки составляют на основании разработанного конструктором чертежа готовой детали с учетом припусков, допусков и напусков (рис. 3.23). Припуск 2 - поверхностный слой металла поковки, подлежащий удалению обработкой резанием для получения требуемых размеров и качества поверхностного слоя готовой детали /. Размеры детали увеличивают на величину припусков в местах, которые подлежат обработке резанием. Припуск 2 зависит от размеров поковки, ее конфигурации, типа оборудования, применяемого для изготовления поковки, и других факторов. Чем больше размеры поковки, тем больше припуск.
Допуск 4 - допустимое отклонение от номинального размера поковки, проставленного на ее чертеже, т.е. разность между наибольшим и наименьшим предельными размерами поковки. Допуск назначают на все размеры поковки.
Конфигурацию поковки иногда упрощают за счет напусков 3 - объема металла, добавляемого к поковке сверх припуска для упрощения ее формы и, следовательно, процесса ковки. Напуски 3 удаляют последующей обработкой резанием. Припуски, допуски и напуски назначают в строгом соответствии с ГОСТом.
Выбор заготовки осуществляют по ее массе, которая может быть подсчитана по формуле
~ ™ М(пр
где тшг - масса исходной заготовки; тпок -масса поковки, подсчитываемая как произведение объема поковки на плотность металла; /ипр - масса отхода с прибыльной частью слитка; тт - масса отхода с донной частью слитка; туг - масса отхода на угар (окалинообразование) при нагреве; тт - масса технологических отходов.
I-
-£
Рис. 3.23. Схема размеров поковки
А-А
пок ном
пок max
ИЗГОТОВЛЕНИЕ ПОКОВОК МАШИНОСТРОИТЕЛЬНЫХ ДЕТАЛЕЙ
83
Отходы с прибыльной частью составляют 14 ... 30 %, а с донной 4 ... 7 %; на угар - в среднем 2 ... 2,5 % массы нагреваемого металла при нагреве холодной заготовки и -1,5 % при каждом подогреве. Технологические отходы (обрубки, выдры и т.п.) зависят от формы поковки и принятой последовательности ковки. При ковке из прокатанной заготовки гпщ, и тт отсутствуют. Размеры поперечного сечения заготовки выбирают с учетом обеспечения необходимой уковки. Достаточной уков-кой для слитков считается 2,5 ... 3, а для проката можно принимать 1,3 ... 1,5.
Оборудование для ковки выбирают в зависимости от режима ковки данного металла или сплава, массы поковки и ее конфигурации. Необходимую мощность оборудования обычно определяют по приближенным формулам или справочным таблицам.
Ковку выполняют на ковочных молотах и ковочных гидравлических прессах.
Молоты - машины динамического, ударного действия. Продолжительность деформации на них составляет тысячные доли секунды. Металл деформируется за счет энергии, накопленной подвижными (падающими) частями молота к моменту их соударения с заготовкой. Поэтому при выборе молотов руководствуются массой их падающих частей. Энергия, накопленная падающими частями, не вся расходуется на деформирование заготовки. Часть ее теряется на упругие деформации инструмента и колебания шабота - детали, на которую устанавливают нижний боек. Чем больше масса шабота, тем больше КПД. Практически масса шабота бывает в 15 раз больше массы падающих частей, что обеспечивает КПД удара г)уд = 0,8 ... 0,9.
Одним из основных типов молотов для ковки являются паровоздушные молоты. Такие молоты приводятся в действие паром или сжатым воздухом давлением 0,7 ... 0,9 МПа. В зависимости от конструкции станины паровоздушные ковочные молоты бывают арочные, мостовые и одностоечные.
Рис. 3.24. Схема паровоздушного молота арочного типа
На станине 4 арочного молота (рис. 3.24) смонтирован рабочий цилиндр 1 с парораспределительным устройством 11. При нажатии педали или рукоятки управления сжатый пар или воздух по каналу 12 поступает в верхнюю полость цилиндра 1 и давит на поршень 2, соединенный штоком 3 с бабой 5, к которой прикреплен верхний боек 6. В результате падающие части 2, 3, 5 и б перемещаются вниз и наносят удары по заготовке, уложенной на нижний боек 7, неподвижно закрепленный на массивном шаботе 8. При подаче сжатого пара по каналу 10 в нижнюю полость цилиндра 1 падающие части поднимаются в верхнее положение. Перемещение бабы 5 происходит в направляющих 9. В ковочных молотах станина 4 и шабот 8 закреплены на фундаменте по отдельности, так как для того, чтобы манипулировать заготовками и кузнечным инструментом, необходимо иметь доступ к бойкам со всех сторон.
Молоты могут совершать удары с разной энергией, зажимать поковки между бойками и удерживать бабу на весу. Ко-
84
ОБРАБОТКА МЕТАЛЛОВ ДАВЛЕНИЕМ
вочные паровоздушные молоты строят с массой падающих частей 1000 ... 8000 кг. На этих молотах изготовляют поковки средней массы (20 ... 350 кг), преимущественно из прокатанных заготовок.
Гидравлические прессы - машины статического действия; продолжительность деформации на них может составлять от единиц до десятков секунд. Металл деформируется приложением силы, создаваемой с помощью жидкости (водной эмульсии или минерального масла), подаваемой в рабочий цилиндр пресса. В России ковочные гидравлические прессы строят усилием 5 ... 100 МН для изготовления крупных поковок в основном из слитков.
Последовательность операций ковки устанавливают в зависимости от конфигурации поковки и технологических требований на нее, вида заготовки (слиток или прокат). В качестве примера на рис. 3.25 приведена последовательность ковки полого массивного цилиндра из слитка на гидравлическом прессе. Цилиндр куют из стального слитка (сталь 40) массой 18 т с пяти нагревов. После первого нафева протягивают прибыльную часть под патрон и сам слиток на диаметр 1000 мм, отрубают донную и прибыльную части слитка (рис. 3.25, а). После второго нафева выполняют осадку, прошивку отверстия и раскатку на оправке (рис. 3.25, б), после третьего нафева - посадку на оправку и протяжку на длину 1100 мм (рис. 3.25, в), после четвертого - посадку на оправку и протяжку средней части на диаметр 900 мм (рис. 3.25, г). После пятого нафева (нафевают только конец А) заковывают конец А.
Технологические требования к деталям, получаемым из кованых поковок, сводятся главным образом к тому, что поковки должны быть наиболее простыми, очерченными цилиндрическими поверхностями и плоскостями (рис. 3.26, / - 4). В поковках следует избегать конических (рис. 3.26, 5) и клиновых (рис. 3.26, б) форм. Необходимо учитывать трудности выполнения ковкой участков пересечений
ш | Ф1400 |
| |
W/A | |
1100 |
|
Заготовка-слиток
а) ~ /
/J-сЛ-, i,, i j *al_ /271
б)
*"Ш$ *
Поковка
Рис. 3.25. Последовательность операций ковки полого цилиндра из слитка
цилиндрических поверхностей между собой (рис. 3.26, 7) и с призматическими поверхностями (рис. 3.26, 8). В поковках следует избегать ребристых сечений, бобышек, выступов и т.п., учитывая, что эти элементы изготовить ковкой трудно. В местах сложной конфигурации приходится прибегать к напускам в целях упрощения конфигурации поковки, что вызывает удорожание детали. Кроме того, следует стремиться, чтобы конфигурация детали позволяла получать при ковке наиболее благоприятное расположение волокон.
Механизация ковки - важная задача улучшения условий труда и повышения производительности, так как ковка - трудоемкий и малопроизводительный процесс. При ковке массивных поковок многие операции вообще не могут быть осуществлены вручную.
Для посадки заготовок (слитков) в печь и выдачи их из печи кроме мостовых и консольно-поворотных кранов применяют специальные посадочные машины напольного или подвесного типа. Ковку на прессах и молотах можно механизировать с помощью различных кранов, кантователей и манипуляторов.
Молоты обслуживаются обычно кон-сольно-поворотными кранами, прессы -мостовыми кранами. Кантователь - меха-
ИЗГОТОВЛЕНИЕ ПОКОВОК МАШИНОСТРОИТЕЛЬНЫХ ДЕТАЛЕЙ
85
Правильно нежелательно
э *е£В^
Q
,г^Л
Рис. 3.26. Правильные и нежелательные формы поковок
низм, подвешиваемый к крюку крана и позволяющий поворачивать слиток вокруг его продольной оси (дополнительно к тем движениям, которые обеспечивает сам кран).
Манипулятор представляет собой тележку, которая может перемещаться по железнодорожным рельсам (рельсовый манипулятор) либо без них (безрельсовый манипулятор). На тележке устанавливают электрические или гидравлические приводы, осуществляющие перемещение самой тележки и движение захвата. Захват зажимает заготовку, производит кантовку -вращение вокруг продольной оси и перемещает ее вверх-вниз. Имеются манипуляторы, у которых кроме этого захват поворачивается вокруг вертикальной оси. Грузоподъемность манипуляторов достигает 120 т.
Начинают применять автоматизированные процессы ковки, при которых работой пресса и манипулятора управляют электронные устройства по заданной про-
грамме. Для повышения точности поковок находят применение устройства (фотоэлементы, датчики с радиоактивными изотопами), регламентирующие положение рабочего инструмента в заключительный момент ковки.
3. ГОРЯЧАЯ ОБЪЕМНАЯ ШТАМПОВКА
Наличие большого разнообразия форм и размеров штампованных поковок, а также сплавов, из которых их штампуют, обусловливает существование различных способов штамповки.
Так как характер течения металла в процессе штамповки определяется типом штампа, то этот признак можно считать основным для классификации способов штамповки. В зависимости от типа штампа выделяют штамповку в открытых и закрытых штампах.
Штамповка в открытых штампах (рис. 3.27, а) характеризуется переменным зазором между подвижной и неподвижной частями штампа. В этот зазор вытекает часть металла - облой, который закрывает выход из полости штампа и заставляет остальной металл целиком заполнить всю полость. В конечный момент деформирования в облой выжимаются излишки металла, находящиеся в полости, что позволяет не предъявлять высоких требований к точности заготовок по массе. Облой затем обрезается в специальных штампах. Штамповкой в открытых штампах можно получать поковки практически всех типов (см. рис. 3.19).
Штамповка в закрытых штампах (рис. 3.27, б, в) характеризуется тем, что полость штампа в процессе деформирования остается закрытой. Зазор между подвижной и неподвижной частями штампа при этом постоянный и небольшой, так что образование облоя в нем не предусмотрено. Устройство таких штампов зависит от типа машины, на которой штампуют. Например, нижняя половина штампа может иметь полость, а верхняя - выступ (на прессах), или наоборот (на молотах).
86
ОБРАБОТКА МЕТАЛЛОВ ДАВЛЕНИЕМ
Рис. 3.27. Схемы штамповки в открытых и закрытых штампах: / - облойная канавка
Закрытый штамп может иметь не одну, а две взаимно перпендикулярные плоскости разъема, т.е. состоять из трех частей (рис. 3.27, в).
При штамповке в закрытых штампах необходимо строго соблюдать равенство объемов заготовки и поковки, иначе при недостатке металла не заполняются углы полости штампа, а при избытке размер поковки по высоте будет больше требуемого. Следовательно, в этом случае процесс получения заготовки усложняется, поскольку отрезка заготовок должна обеспечивать высокую точность. Как правило, штамповкой в закрытых штампах получают поковки групп 7 и 2 (см. рис. 3.19).
Существенное преимущество штамповки в закрытых штампах - уменьшение расхода металла, поскольку нет отхода в облой. Поковки, полученные в закрытых штампах, имеют более благоприятную структуру, так как волокна обтекают контур поковки, а не перерезаются в месте выхода металла в облой. При штамповке в закрытых штампах металл деформируется в условиях всестороннего неравномерного сжатия при больших сжимающих напряжениях, чем в открытых штампах. Это позволяет получать большие степени деформации и штамповать малопластичные сплавы.
К штамповке в закрытых штампах можно отнести штамповку выдавливанием и прошивкой, так как штамп в этих случаях выполняют по типу закрытого и отхода в заусенец не предусматривают. Дефор-
мирование металла при горячей штамповке выдавливанием и прошивкой происходит так же, как при холодном прямом и обратном выдавливании.
Схема технологического процесса штамповки в основном определяется конфигурацией и размером детали, которую необходимо получить.
Чертеж поковки составляют по чертежу детали. При получении поковки в открытом штампе прежде всего необходимо правильно выбрать поверхность разъема, т.е. поверхность, по которой соприкасаются между собой верхняя и нижняя половины штампа. Обычно эта поверхность является плоскостью или сочетанием плоскостей. Плоскость разъема должна быть выбрана такой, чтобы поковка свободно вынималась из штампа. В целях облегчения заполнения металлом полости штампа желательно выбрать плоскость разъема таким образом, чтобы полости штампов имели наименьшую глубину. При штамповке возможен сдвиг одной половины штампа относительно другой. Чтобы такой сдвиг можно было легко контролировать, плоскость разъема должна пересекать вертикальную поверхность поковки (рис. 3.28). Желательно плоскость разъема располагать так, чтобы естественные уклоны облегчили извлечение поковки из штампа (рис. 3.28, б).
Припуски на механическую обработчику назначают главным образом на сопрягаемые поверхности детали. Величина припуска зависит от габаритных размеров
ИЗГОТОВЛЕНИЕ ПОКОВОК МАШИНОСТРОИТЕЛЬНЫХ ДЕТАЛЕЙ
87
Ф--Ф
±
\\
-п.
а)
а)
б)
Рис. 3.28. Выбор плоскости разъема штампа: а - неправильно; б - правильно
й, ММ
7 | 1 | т=20...50кг 1 |
J |
| т=5,6...10кг U т=и,8кг |
- л\_г. 1 |
|
О 200 400 а;Ь,мц
Рис. 3.29. Зависимость величины припуска Д от габаритных размеров и массы штампованной на прессе стальной поковки
и массы поковки (рис. 3.29), от вида оборудования штамповки, требований к точности и шероховатости детали; припуск выбирают по ГОСТу. Допуски на штамповку назначают также по ГОСТу; допуски учитывают возможные отклонения от номинальных размеров вследствие не до-штамповки по высоте, сдвига штампов, их износа и т.п.
Для облегчения заполнения полости штампа и извлечения из нее поковки боковые поверхности последней должны иметь штамповочные уклоны. Штамповочные уклоны назначают сверх припуска; они повышают отход металла при механической обработке и утяжеляют поковку. Уклон зависит от глубины и сложности полости, применяемого для штамповки оборудования и колеблется для стальных
г)
Рис. 3.30. Примеры составления чертежа поковки:
а - деталь; б - поковка при штамповке в открытом штампе; в - то же, в закрытом штампе с одной плоскостью разъема; г - то же, в закрытом штампе с двумя плоскостями разъема
поковок в пределах 3 ... 10°. Для наружных поверхностей поковки (вследствие температурной усадки) штамповочные уклоны а принимают меньшими, чем для внутренних р (рис. 3.30).
Все пересекающиеся поверхности поковки сопрягаются по радиусам. Это необходимо для лучшего заполнения полости штампа и предохранения его от преж-
88
ОБРАБОТКА МЕТАЛЛОВ ДАВЛЕНИЕМ
девременного износа и поломок. Радиусы скругления зависят от глубины полости. Внутренние радиусы R скругления в 3 ... 4 раза больше, чем наружные радиусы г (см. рис. 3.30). Наружные радиусы скругления г составляют обычно 1 ... 6 мм.
При штамповке в штампах с одной плоскостью разъема нельзя получить сквозное отверстие в поковке, поэтому наносят только наметку отверстия с перемычкой-пленкой, удаляемой впоследствии в специальных штампах. Штамповкой не всегда можно получить полностью требуемую конфигурацию поковки, поэтому на отдельных участках поковок могут быть сделаны напуски, упрощающие форму. В частности, при диаметрах отверстия, меньших 30 мм, наметки в поковках не делают.
Изменив все размеры спроектированной поковки на величину усадки, получают чертеж горячей поковки, по которому изготовляют полость штампа.
При штамповке в открытых штампах вдоль внешнего контура полости выполняют специальную облойную канавку штампа (см. рис. 3.27, 1). Для обеспечения хорошего заполнения металлом полости штампа и повышения его стойкости особенно большое значение имеет толщина облоя /гоб, которую, как и другие размеры облойной канавки, подсчитывают по формулам в зависимости от конфигурации поковки.
Чертеж поковки при штамповке в закрытых штампах с одной плоскостью разъема составляют так же, как при штамповке в открытых, но плоскость разъема выбирают по торцовой наибольшей поверхности детали (см. рис. 3.30, в). Составление чертежа поковки при штамповке в закрытых штампах с двумя взаимно перпендикулярными плоскостями разъема имеет свои специфические особенности. Прежде всего наличие двух плоскостей разъема не требует на поковках напусков там, где они необходимы в штампах с од-
ной плоскостью разъема (рис. 3.30, г). Штамповочные уклоны назначают значительно меньшего размера или их можно совсем не предусматривать.
Технологические требования к деталям, получаемым из штампованных поковок, определяются прежде всего тем, что их обычно обрабатывают только по сопрягаемым поверхностям, а большинство поверхностей впоследствии не обрабатываются. Поэтому при проектировании самой детали конструктор должен учитывать особенности процесса штамповки. Прежде всего необходимо представить, как будет происходить разъем штампа. Например, деталь, показанную на рис. 3.31, нельзя штамповать без очень больших напусков, так как невозможно выбрать разъем штампа, допускающий извлечение поковки. В таком случае желательно изменить конструкцию детали. Заранее установить плоскость разъема необходимо еще и потому, что от этого зависят другие элементы конструкции детали (углы наклона стенок, радиусы скруглений и др.).
При проектировании детали следует стремиться к возможно меньшей разности в площадях поперечных сечений на различных участках длины детали, избегать тонких стенок, высоких ребер, длинных отростков и тонких приливов, примыкающих к плоскости разъема.
i i
Рис. 3.31. Пример неправильной конструкции поковки
ИЗГОТОВЛЕНИЕ ПОКОВОК МАШИНОСТРОИТЕЛЬНЫХ ДЕТАЛЕЙ
89
|
|
| \ / |
|
|
| \ |
н | 1 Н |
| г |
$ |
|
|
|
|
|
|
|
S,MM
О SO О W00 1500 F.CM*
Рис. 3.32. Зависимость толщины полотна S от площади проекции детали на плоскость разъема F для стали / и алюминиевых сплавов 2
Наименьшая толщина полотна поковки в плоскости разъема штампов не должна быть меньше рекомендуемых минимальных значений, зависящих от размеров и материала детали (рис. 3.32). Высота ребер и расстояние между ними связаны между собой и толщиной полотна поковки: чем меньше последняя, тем меньше должна быть высота ребер, а с увеличением высоты ребер расстояние между ними должно увеличиваться. В противном случае значительно возрастает сила, необходимая для заполнения штампа, уменьшается его стойкость.
Необходимо проверять в каждом отдельном случае целесообразность изготовления деталей из двух или нескольких частей с последующей сваркой и, наоборот, целесообразность объединения в одной поковке смежных деталей. Например, при штамповке детали / (рис. 3.33) как целое приходится предусматривать большие напуски; отход металла при последующей обработке резанием составляет более 50 % массы поковки. Та же деталь II сварной конструкции значительно проще для штамповки по частям; в этом случае можно отштамповать наметки отверстий, уменьшить отход металла.
Заготовками для горячей штамповки в подавляющем большинстве случаев
служит прокат круглого, квадратного, прямоугольного профилей, а также периодический. При этом прутки разрезают на отдельные (мерные) заготовки, хотя иногда штампуют из прутка с последующим отделением поковки непосредственно на штамповочной машине. Мерные заготовки отрезают от прутка различными способами: на кривошипных пресс-ножницах, механическими пилами, газовой резкой и т.д.
На ножницах пруток 1 подают по рольгангу б до регулируемого упора 4, прижимают к неподвижному ножу 5 прижимом 2, а подвижной нож 3 отделяет от прутка заготовку необходимой длины.
Ножи могут быть для круглых (рис. 3.34, а) и квадратных (рис. 3.34, б) прутков. Этот способ получения мерных заготовок наиболее производителен, однако отклонение их длины составляет 1 ... 5 мм и торец заготовок получается неровным.
Поковки простой конфигурации, не имеющие большой разности сечений по высоте (длине), обычно штампуют в штампах с одной полостью, т.е. в одно-ручьевых штампах. Поковки сложной конфигурации с резкими изменениями сечений по длине, с изогнутой осью штамповать в одноручьевом штампе из прокатанных заготовок постоянного профиля невозможно (иначе штамповка сопровождается недопустимо большим отходом в облой).
■Ш№-«тт
Рис. 3.33. Упрощение способа штамповки путем последующей сварки отдельных частей поковки
90
ОБРАБОТКА МЕТАЛЛОВ ДАВЛЕНИЕМ
по А
-ф
■^и
а)
0)
Рис. 3.34. Схема отрезки заготовки от прутка на пресс-ножницах с ножами для круглых (а) и квадратных (б) прутков
При штамповке небольшой партии поковок фасонную заготовку можно получить ковкой, однако производительность такого способа низка.
При изготовлении очень большого числа одинаковых поковок (в автотракторной, авиационной промышленности и др.) значительного экономического эффекта достигают применением фасонных заготовок из периодического проката. В этом случае пруток с периодически повторяющимся профилем сечения состоит из элементов однотипных конфигураций, каждый из которых представляет собой подготовленную для штамповки заготовку. На рис. 3.7, б показаны примеры периодического проката для штамповки в автомобильной промышленности.
Получить фасонную заготовку из проката круглого или квадратного профиля можно и вальцовкой на ковочных вальцах непосредственно перед штамповкой (с одного нагрева). Вальцовка является, по существу, продольной прокаткой, осуществляемой между двумя валками с закрепленными на них секторными штампами (см. рис. 3.39, а).
Поковка W"—\^jkv Заготовка
Рис. 3.35. Многоручьевой штамп
Чаще всего в настоящее время фасонную заготовку получают в заготовительных ручьях штампов. Этот способ в зависимости от характера производства осуществляют либо в одном многоручьевом штампе, либо в нескольких одноручьевых, установленных на отдельных штамповочных машинах. В первом случае в одном блоке расположены полости (ручьи) для получения фасонной заготовки и окончательного формообразования поковки (рис. 3.35).
Ручьи в многоручьевых штампах подразделяют на заготовительные и штамповочные. К заготовительным ручьям, служащим для получения фасонной заготовки, относятся протяжной, подкатнои, гибочный, площадка для осадки и др.
ИЗГОТОВЛЕНИЕ ПОКОВОК МАШИНОСТРОИТЕЛЬНЫХ ДЕТАЛЕЙ
91
Протяжной ручей / (рис. 3.35) служит для увеличения длины отдельных участков заготовки за счет уменьшения площади их поперечного сечения. Ручей выполняют в форме бойков, образующих порог протяжного ручья; деформация заготовок в нем аналогична операции протяжки на плоских бойках при ковке. Из протяжного ручья в зависимости от конфигурации поковки заготовка может поступать в штамповочный ручей или другие заготовительные ручьи.
Подкатной ручей 2 служит для местного увеличения сечения заготовки (набора металла) за счет уменьшения сечения рядом лежащих участков, т.е. для распределения объема металла вдоль оси заготовки в соответствии с распределением его в поковке. При обработке в подкатном ручье заготовку поворачивают вокруг оси после каждого удара.
Гибочный ручей 3 применяют только прн штамповке поковок, имеющих изогнутую ось; он служит для придания заготовке формы, соответствующей форме поковки в плоскости разъема. Из гибочного ручья в следующий ручей заготовку передают с поворотом на 90°.
При штамповке поковок, имеющих в плане форму окружности нли близкую к ней, часто применяют осадку исходной заготовки до требуемых размеров по высоте и диаметру. Для этой цели на плоскости штампа предусматривают площадку для осадки.
К штамповочным ручьям относят окончательный (чистовой) ручей и предварительный (черновой). Чистовой ручей служит для получения готовой поковки и по конфигурации точно соответствует горячей поковке. Назначение чернового ручья 4 заключается в основном в снижении износа чистового. При наличии чернового ручья в нем происходит основное формообразование, в чистовом же ручье получают требуемые размеры поковки. Черновой ручей применяю при штамповке поковок сложной конфигурации. За отдельными исключениями форму полости
чернового ручья принимают такой же, как у чистового, но радиусы скруглений и уклоны увеличивают, а поперечные размеры в плоскости разъема устанавливают немного меньше размера в полости чистового ручья. При штамповке в открытых штампах черновой ручей облойной канавки не имеет.
Вопрос о применении тех или иных ручьев и различных их комбинаций решают при разработке технологического процесса штамповки в зависимости от конфигурации и габаритных размеров поковки, а также от особых требований в отношении направления волокна макроструктуры.
В многоручьевом штампе (см. рис. 3.35) чистовой ручей 5 расположен в центре штампа, так как при штамповке наибольшее усилие возникает в нем. По краям штампа располагают ручьи, в которых деформирующие силы штамповки наименьшие, чтобы уменьшить эксцентрично приложенную на штамповочное оборудование нагрузку.
Размеры исходной заготовки можно определить, предварительно подсчитав ее объем, который равен сумме объемов поковки, облоя (при штамповке в открытых штампах) и отхода в окалину. Объем поковки определяют по ее чертежу; объем облоя - по нормалям в зависимости от размера и конфигурации поковки (объем облойной канавки в 1,3 ... 1,5 раза больше объема облоя). Отход в окалину зависит от способа нагрева. При штамповке осадкой заготовки в торец (поковки, см. на рис. 3.19, /) размеры ее подсчитывают из условия
1,25 </3aiM,ar< 2,5,
где /Заг - длина заготовки; d,ir - диаметр заготовки (или сторона квадрата).
При меньшем отношении длины к диаметру затрудняется отрезка заготовок, при большем возможен продольный изгиб при осадке.
Оборудование для горячей объемной штамповки: молоты, горячештамповоч-
92
ОБРАБОТКА МЕТАЛЛОВ ДАВЛЕНИЕМ
ные кривошипные прессы, горизонтально-ковочные машины, гидравлические прессы и машины для специализированных процессов штамповки. Процессы штамповки на этих машинах имеют свои особенности, обусловленные устройством и принципом их действия.
Основным видом штамповочных молотов являются паровоздушные штамповочные молоты. Принцип их действия тот же, что и у паровоздушных ковочных молотов, но конструкция другая.
У штамповочных молотов стойки станины устанавливают непосредственно на шаботе. Эти молоты имеют усиленные регулируемые направляющие для движения бабы. Масса шабота у штамповочных молотов в 20 ... 30 раз больше массы падающих частей. Все эти конструктивные особенности обеспечивают необходимую при штамповке точность соударения штампов.
Паровоздушные штамповочные молоты строят с массой падающих частей 630... 25 000кг.
На молотах штампуют поковки разнообразных форм преимущественно в многоручьевых открытых штампах. Поскольку ход молота нежесткий, штамп конструируют так, чтобы при последнем ударе его половинки сомкнулись по плоскости соударения. На молоте обычно штампуют за несколько (три - пять) ударов. После каждого удара баба молота уходит вверх, и в процессе деформирования наступает перерыв. Это приводит к тому, что часть поковки, деформируемая в верхнем штампе, охлаждается менее интенсивно, чем нижняя часть поковки. Поэтому на молотах верхняя полость штампа заполняется металлом лучше, чем нижняя. Течение металла облегчается также благодаря тому, что после каждого удара окалина отваливается от поверхности заготовки и выдувается сжатым воздухом из штампа.
У бесшаботных паровоздушных молотов шабот заменен подвижной бабой, соединенной с верхней бабой механической
или гидравлической связью. При соударении верхней и нижней баб развивается значительная энергия (до 1 МДж), что позволяет штамповать на этих молотах крупные поковки преимущественно в од-норучьевых штампах (ввиду подвижности обоих штампов многоручьевая штамповка на них затруднена).
Кинематическая схема горячештам-повочного кривошипного пресса приведена на рис. 3.36. Электродвигатель 4 передает движение клиновыми ремнями на шкив 3, сидящий на приемном (промежуточном) валу 5, на другом конце которого закреплено малое зубчатое колесо б. Это колесо находится в зацеплении с большим зубчатым колесом 7, свободно вращающимся на кривошипном валу 9. С помощью пневматической фрикционной дисковой муфты 8 зубчатое колесо 7 может быть сцеплено с кривошипным валом 9; тогда последний придет во вращение. Посредством шатуна 10 вращение кривошипного вала преобразуется в возвратно-поступательное движение ползуна /.
Рис. 3.36. Кинематическая схема горячештам-повочного кривошипного пресса
ИЗГОТОВЛЕНИЕ ПОКОВОК МАШИНОСТРОИТЕЛЬНЫХ ДЕТАЛЕЙ
93
Для остановки вращения кривошипного вала после выключения муфты служит тормоз 2. Стол пресса 11, установленный на наклонной поверхности, может перемещаться клином 12 и тем самым в незначительных пределах регулировать высоту штампового пространства. Для облегчения удаления поковки из штампа прессы имеют выталкиватели в столе и ползуне. Выталкиватели срабатывают при ходе ползуна вверх.
Кривошипные прессы имеют постоянный ход, равный удвоенному радиусу кривошипа. Поэтому в каждом ручье штампуют за один ход пресса, и производительность штамповки на прессах выше, чем на молотах. Наличие постоянного хода приводит к большей точности поковок по высоте, а высокая жесткость конструкции пресса, отсутствие ударов и сотрясений делают возможным применение направляющих колонок у штампов, что практически исключает сдвиг. Штамповочные уклоны у поковок меньше, так как на прессах предусмотрены выталкиватели. При штамповке на кривошипных прессах имеются большие возможности для механизации и автоматизации процесса, чем при штамповке на молотах.
Наряду с перечисленными преимуществами штамповка на кривошипных прессах имеет и недостатки. Ввиду жесткого хода ползуна на прессах при многоручьевой штамповке нельзя применять такие ручьи, как протяжной, подкатной и отрезной.
Заготовка перед штамповкой на прессе должна быть полностью очищена от окалины, так как деформация происходит за один ход пресса; при наличии окалины она заштамповывается в поверхность поковки. Стоимость кривошипного горяче-штамповочного пресса в 3 ... 4 раза выше стоимости эквивалентного по мощности молота. На кривошипных прессах возможна штамповка всех видов поковок, штампуемых на молотах. Однако при штамповке поковок с удлиненной осью и большой разностью площадей поперечных сече-
ний по длине требуется применение предварительно профилированных заготовок.
Течение металла при штамповке на прессах отличается от течения в молотовом штампе, что необходимо иметь в виду при проектировании технологического процесса. Поскольку скорость деформирования на прессах ниже, время контакта металла с инструментом больше, чем на молотах. Это приводит к переохлаждению поверхности заготовки и худшему заполнению полости штампа. В то же время, если при штамповке на-молоте облой между ударами остывает и препятствует течению металла в стороны, то на прессе при деформировании за один ход в облой поступает наиболее нагретый металл. В результате течение его в горизонтальном направлении происходит легче, чем в вертикальном. Поэтому для хорошего заполнения прессового штампа плоскость разъема выбирают вблизи торца поковки, так что полость в одной из частей штампа получается значительно глубже другой.
Ввиду худшего. заполнения полостей при штамповке сложных поковок на прессах применяют большее число ручьев, чем в молотовых штампах. Штампы на прессах не должны смыкаться на величину, равную толщине облоя, поэтому полость для него делается открытой в отличие от молотовых штампов.
Определение деформирующей силы, требуемой для штамповки на кривошипном горячештамповочном прессе, имеет важное значение, так как при недостаточном усилии пресса может произойти его поломка. Существуют аналитические экспериментально проверенные формулы для определения деформирующей силы при штамповке с достаточной степенью точности. Благодаря наличию выталкивателей на прессах удобно штамповать в закрытых штампах выдавливанием и прошивкой. Кривошипные горячештамповочные прессы строят усилием 6,3 ... 100 МН; такие прессы успешно заменяют штамповочные молоты с массой падающих частей 0,63 ... 10 т.
94
ОБРАБОТКА МЕТАЛЛОВ ДАВЛЕНИЕМ
Рис. 3.37. Кинематическая схема горизонтально-ковочной машины
Кинематическая схема горизонтально-ковочной машины представлена на рис. 3.37. Главный ползун 7, несущий пуансон, приводится в движение от кривошипного вала 6 с помощью шатуна 5. Подвижная щека / приводится от бокового ползуна 3 системой рычагов 2; боковой ползун, в свою очередь, - кулачками 4, сидящими на конце кривошипного вала машины. Горизонтально-ковочные машины создают усилие на главном ползуне до 31,5 МН.
Горизонтально-ковочные машины имеют штампы, состоящие из трех частей (рис. 3.38): неподвижной матрицы 3, подвижной матрицы 5 и пуансона /, размыкающихся в двух взаимно перпендикулярных плоскостях. Пруток 4 с нагретым участком на его конце закладывают в неподвижную матрицу 3. Положение конца прутка определяется упором 2. При включении машины подвижная матрица 5 прижимает пруток к неподвижной матрице, упор 2 автоматически отходит в сторону, и только после этого пуансон / соприкасается с выступающей частью прутка и деформирует ее. Металл при этом заполняет формующую полость в матрицах, расположенную впереди зажимной части. Формующая полость может находиться не только в матрице, но и совместно в матрице и пуансоне, а также только в одном пуансоне.
Рис. 3.38. Схемы основных операций при штамповке на горизонтально-ковочной машине: а - высадка; б - высадка - набор металла; в - прошивка; г - пробивка
После окончания деформирования пуансон движется в обратном направлении, выходя из полости матрицы; матрицы разжимаются, и деформированную заготовку вынимают или она выпадает из них. Штамповку на горизонтально-ковочной машине можно выполнять за несколько переходов в отдельных ручьях, оси которых расположены одна над другой. Каждый переход осуществляется за один рабочий ход машины.
Основные операции при штамповке на горизонтально-ковочных машинах - высадка (см. рис. 3.38. а, б), прошивка (см. рис. 3.38, в) и пробивка (см. рис. 3.38, г).
ИЗГОТОВЛЕНИЕ ПОКОВОК МАШИНОСТРОИТЕЛЬНЫХ ДЕТАЛЕЙ
95
Вне зависимости от конфигурации полости пуансона или матрицы за один переход можно высадить выступающий из зажимной части матрицы конец прутка только в том случае, если длина его не превышает трех диаметров. При большей длине возможен изгиб заготовки, поэтому необходимо предварительно произвести так называемый набор металла, т.е. постепенно в специальных наборных ручьях увеличить поперечное сечение заготовки, уменьшая длину высаживаемой части. Набор металла (см. рис. 3.38, б) предпочтительнее осуществлять в полости пуансона /, которой придают коническую форму. При этом меньший диаметр конуса приблизительно равен диаметру исходного прутка d; максимальный диаметр D не должен превышать l,5d, а длина свободного участка - а не должна превышать двух диаметров исходного прутка.
На горизонтально-ковочных машинах в основном штампуют поковки типа стержня с фланцем, кольца или стакана (см. рис. 3.16, 1,2 vi 3,6). Так как штамп состоит из трех частей, напуски на поковках и штамповочные уклоны малы или отсутствуют.
Исходным материалом для штамповки на горизонтально-ковочных машинах обычно служит прокат круглого сечения. Чаще всего штампуют от прутка, из которого получают несколько поковок. Диаметр исходного прутка зависит от конфигурации поковки. Так как операцию протяжки на горизонтально-ковочной машине не производят, площадь поперечного сечения прутка должна быть не больше минимальной площади поперечного сечения поковки.
Точность поковок и производительность штамповки не ниже, чем в случае использования кривошипных горяче-штамповочных прессов. Несмотря на указанные преимущества горизонтально-ковочные машины менее универсальны (по сравнению с молотами и прессами), имеют более высокую стоимость.
Гидравлические штамповочные прессы по своему устройству принципиально не
отличаются от ковочных. Усилие современных гидравлических штамповочных прессов достигает 750 МН.
На гидравлических прессах штампуют поковки типа дисков, коленчатых валов, различного рода рычагов, кронштейнов, сферических днищ, цилиндрических стаканов. Особое значение имеет штамповка на гидравлических прессах крупногабаритных панелей и рам из легких сплавов в самолетостроении. Исходными заготовками являются прокат (в том числе листовой) и полуфабрикат ковки. Перед закладкой в штамп нагретая заготовка должна быть очищена от окалины.
Штампуют в открытых и закрытых штампах (с одной и двумя плоскостями разъема), как правило, в одном ручье.
На гидравлических прессах осуществляют изотермическую штамповку. При этом способе горячее деформирование происходит в изотермических условиях, когда штампы и окружающее их ограниченное пространство нагревают до температуры деформации сплава. Чтобы обеспечить полное протекание разупрочняю-щих процессов во время деформации, штампуют при низких скоростях деформирования. Температура нагрева рабочей зоны установки и штампов, изготовляемых из жаропрочного сплава, может достигать 900 °С. Для нагрева используют индукторы, встроенные в установку.
Изотермическая штамповка значительно повышает пластичность деформируемого сплава и снижает силу деформирования.
4. РОТАЦИОННЫЕ СПОСОБЫ ИЗГОТОВЛЕНИЯ ПОКОВОК
В основе этих способов лежит процесс ротационного обжатия при вращении инструмента или заготовки. При обкатывании инструментом заготовки очаг деформации имеет локальный характер и постоянно перемещается по заготовке, вследствие чего сила, действующая на инструмент, меньше, чем при штамповке. Это позволяет изготовлять поковки большей
96
ОБРАБОТКА МЕТАЛЛОВ ДАВЛЕНИЕМ
массы (например, заготовки вагонных осей) с высокой точностью, так как упругие деформации при меньших силах меньше.
Штамповка на ковочных вальцах напоминает продольную прокатку в одной рабочей клети, на двух валках которой закрепляют секторные штампы, имеющие соответствующие ручьи (рис. 3.39, а).
Нагретую заготовку / подают до упора 2 в тот момент, когда секторные штампы 3 расходятся. При повороте валков происходят захват заготовки и обжатие ее по форме полости; одновременно с обжатием заготовка выталкивается в сторону подачи.
На вальцах изготовляют поковки сравнительно несложной конфигурации, типа звеньев цепей, рычагов, гаечных ключей и т.п. Кроме того, на вальцах фасонируют заготовки для последующей штамповки, чаще всего на горячештамповочных кривошипных прессах. Профилируют и штампуют в одном или нескольких ручьях. Исходное сечение заготовки принимают равным максимальному сечению поковки, так как при вальцовке происходит главным образом протяжка.
Штамповка на ротационно-ковоч-ных машинах подобна операции протяжки и заключается в местном обжатии заготовки цо ее периметру. Заготовку / (рис. 3.39, б) в виде прутка или трубы помещают в отверстие между бойками 5 машины, находящимися в шпинделе 4.
Бойки могут свободно скользить в ради-ально расположенных пазах шпинделя. При вращении шпинделя ролики 3, помещенные в обойме 2, толкают бойки 5, которые наносят удары по заготовке. В исходное положение бойки возвращаются под действием центробежных сил. В машинах этого типа получают поковки, имеющие форму тел вращения. Существуют машины, у которых вместо шпинделя с бойками вращается обойма с роликами; в этом случае для возвратного движения ползунов служат пружины. В таких машинах получают поковки квадратного, прямоугольного и других сечений.
Типовыми поковками, изготовляемыми радиальным обжатием, являются различного рода ступенчатые цилиндрические или конические валики, трубы с оттянутыми на конус концами и т.п.
Поперечно-клиновой прокаткой
(рис. 3.39, в) получают заготовки валов и осей (см. рис. 3.19, За) с резкими ступенчатыми переходами диаметром от 12 до 130 мм. Деформирование может осуществляться инструментом в виде двух валков, валка и сегмента или двух плоских плит. Плоскоклиновой инструмент наиболее прост в изготовлении и обеспечивает получение валов сложной конфигурации с высокой точностью: допуски на диаметральные размеры 0,2 ... 0,4 мм, на линейные 0,3 ... 0,5 мм. Заготовка 2 в виде
г^Щзз
Рис. 3.39. Схемы действия ковочных вальцов (а), ротационно-ковочной машины (б), станов поперечно-клиновой прокатки (в) и раскатки (г)
ИЗГОТОВЛЕНИЕ ПОКОВОК МАШИНОСТРОИТЕЛЬНЫХ ДЕТАЛЕЙ
97
круглого прокатанного прутка после нагрева автоматически перемещается в рабочую зону клиньев / в их исходном положении. Клиновой инструмент, закрепленный в подвижной салазке стана, совершает прямолинейное движение, и заготовка прокатывается между двумя клиновыми плитами (см. рис. 3.39, в).
Раскатка кольцевых заготовок на раскатных станах получила особенно большое распространение при производстве колец подшипников. Схема процесса показана на рис. 3.39, г. Заготовка / представляет собой кольцо с меньшим диаметром и большей толщиной стенки, чем у поковки. Заготовки под раскатку получают штамповкой на горизонтально-ковочных машинах или на молотах. При подведении к заготовке /, надетой на валок 2, быстровращающегося валка 3 заготовка и валок 2 начинают вращаться. При дальнейшем сближении валков 2 к 3 увеличивается наружный диаметр заготовки за счет уменьшения толщины и происходит ее контакт с направляющим роликом 4, обеспечивающим получение правильной кольцевой формы поковки. После касания поковкой контрольного ролика 5 раскатка прекращается.
Раскаткой получают поковки колец с поперечными сечениями различной формы (зависящими от профиля валков) наружным диаметром 70 ... 700 мм и шириной 20... 180 мм (см. рис. 3.19, 1,6).
Горячая накатка зубчатых колес находит применение, в частности, в автомобильной и тракторной промышленности. Сущность процесса заключается в обкатке нагретой штучной или прутковой заготовки в зубчатых валках.
Принципиальная схема одного из способов горячей накатки показана на рис. 3.40. Поверхностный слой цилиндрической заготовки / нагревается током повышенной частоты с помощью индуктора 2. Зубчатый валок получает принудительное вращение и радиальное перемещение под действием силы со стороны гидравлического цилиндра. Благодаря радиальной
4 - 9503
Рис. 3.40. Схема горячей накатки зубьев зубчатого колеса
силе зубчатый валок 4, постепенно вдавливаясь в заготовку /, формует на ней зубья. Ролик 3, свободно вращаясь на валу, обкатывает зубья по наружной поверхности. После прокатки прутковой заготовки ее разрезают на отдельные шестерни. Процесс осуществляют на автоматических и полуавтоматических установках, например на полуавтомате горячего накатывания зубьев конических колес диаметром 175 ... 350 мм и модулем до 10 мм.
Изготовление зубчатых колес методом горячего накатывания повышает износостойкость и усталостную прочность зубьев на 20 ... 30 %. Это объясняется, в частности, благоприятной макроструктурой, при которой волокна обтекают контуры зубьев. Расход металла на 18 ... 40 % меньше, чем при получении зубьев на зубона-резных станках, а производительность накатки в несколько раз выше производительности чернового зубофрезерования.
5. СТРУКТУРА
ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА ГОРЯЧЕЙ ОБЪЕМНОЙ ШТАМПОВКИ
Общий технологический процесс изготовления поковок горячей объемной штамповкой состоит обычно из следующих этапов: отрезки проката на мерные заготовки; нагрева; штамповки; обрезки облоя и пробивки пленок; правки; термической обработки; очистки поковок от окалины; калибровки; контроля готовых поковок.
98
ОБРАБОТКА МЕТАЛЛОВ ДАВЛЕНИЕМ
Для осуществления всех этих этапов штамповочные цехи могут иметь соответствующие отделения, участки или в составе автоматических линий необходимое для них оборудование.
После формоизменения в штамповочных ручьях с поковкой выполняют ряд отделочных или завершающих технологический процесс штамповки операций. Все поковки, штампуемые в открытых штампах, имеют облой в плоскости разъема, а в поковках с внутренними отверстиями остаются пленки между наметками (исключая поковки, штампуемые на горизонтально-ковочных машинах).
Обрезку облоя и пробивку пленок выполняют с помощью штампов, устанавливаемых на кривошипных прессах, по принципу действия аналогичных кривошипным штамповочным прессам.
При обрезке облоя (рис. 3.41, а) поковку 3 укладывают в матрицу 4 так, что она своим облоем ложится на режущие кромки матрицы. При нажатии пуансоном / на поковку 3 режущие кромки матрицы срезают облой по всему периметру поковки, которая после этого проваливается вниз. Облой остается на матрице, а чтобы он не застревал на пуансоне, применяют съемник 2.
При пробивке пленки (рис. 3.41, б) поковку 3 укладывают в матрицу 4 и с помощью пуансона / пробивают; отход проваливается через отверстие матрицы в тару, установленную под столом пресса. Существуют штампы совмещенного действия, в которых обрезают облой и пробивают пленки за один ход пресса.
Рис. 3.41. Схемы обрезки заусенца (а) и пробивки пленки (б)
Обрезку и пробивку поковок можно выполнять в холодном и горячем состояниях: для мелких поковок из низкоуглеродистой и низколегированной сталей - в холодном состоянии. В остальных случаях обрезают облой и пробивают пленку сразу же после штамповки на обрезном прессе, установленном непосредственно около штамповочной машины.
Правку штампованных поковок выполняют для устранения искривления осей и искажения поперечных сечений, возникающих при затрудненном извлечении поковок из штампа (вследствие застревания поковки в полости штампа), после обрезки облоя, а также после термической обработки. Крупные поковки и поковки из высокоуглеродистых и высоколегированных сталей правят в горячем состоянии либо в чистовом ручье штампа сразу после обрезки облоя, либо на обрезном прессе (обрезной штамп совмещается с правоч-ным), либо на отдельной машине, установленной рядом со штамповочным оборудованием (см. 7 на рис. 3.44).
Мелкие поковки можно править в холодном состоянии после термической обработки.
Очистка поковок от окалины облегчает условия работы режущего инструмента при последующей обработке резанием, а также контроль поверхности поковок. Очистку осуществляют в барабанах, дробью, травлением.
В барабанах поковки очищают следующим образом. Поковки загружают в барабан с наклонной осью вращения, в котором находятся стальные звездочки. При вращении барабана поковки трутся и ударяются друг о друга и о звездочки, благодаря чему окалина сбивается. При очистке тяжелых поковок на их поверхности образуются забоины, поэтому таким способом их не очищают.
Дробеструйная очистка заключается в том, что металлическая дробь размером 1 ... 3 мм с большой скоростью ударяет о поверхность поковки и сбивает с нее окалину. Скорость дроби задается сжатым
ИЗГОТОВЛЕНИЕ ПОКОВОК МАШИНОСТРОИТЕЛЬНЫХ ДЕТАЛЕЙ
99
воздухом в специальных аппаратах. Этим способом очищают мелко- и среднегаба-ритные поковки.
Травлением в водных растворах кислот, нагретых до температуры 40 ... 60 °С, очищают крупногабаритные поковки сложных конфигураций.
Калибровка поковок повышает точность размеров всей поковки или ее отдельных участков. Таким образом, последующая механическая обработка устраняется полностью или ограничивается только шлифованием. Различают плоскостную и объемную калибровку.
Плоскостная калибровка служит для получения точных вертикальных размеров на одном или нескольких участках поковки, ограниченных горизонтальными плоскостями (рис. 3.42, б). При плоскостной калибровке поковку правят в холодном состоянии на кривошипно-коленных прессах (рис. 3.42, а). Механизм кривошипно-коленного пресса обеспечивает получение больших усилий на ползуне 2 при сравнительно малом крутящем моменте на валу /.
Поскольку калибруют с небольшой степенью деформации (менее 5 ... 10 %), необходимо заранее при штамповке предусматривать припуск на калибровку. Причем с увеличением припуска точность размеров после калибровки уменьшается,
а качество поверхности улучшается. Обычная точность после калибровки составляет ± (0,1 ... 0,25) мм, а допуск при калибровке с повышенной точностью в 2 раза меньше.
Объемной калибровкой (рис. 3.42, в) повышают точность размеров поковки в разных направлениях и улучшают качество ее поверхности. Калибруют в штампах с ручьями, соответствующими конфигурации поковки.
Контроль качества необходим не только для готовых поковок, но и для условий их изготовления на всех этапах, начиная от получения исходных заготовок.
При контроле готовых поковок их осматривают, выборочно измеряют геометрические размеры, твердость. Размеры контролируют универсальными измерительными инструментами (штангенциркулями, штангенвысотомерами, штангенглу-биномерами и др.) и специальными инструментами (скобами, шаблонами и контрольными приспособлениями). Несколько поковок из партии иногда подвергают металлографическому анализу и механическим испытаниям. Внутренние дефекты в поковках определяют ультразвуковым методом контроля и рентгеновским просвечиванием.
Рис. 3.42. Кинематическая схема кривошипно-коленного пресса (а) и схемы плоскостной (б) и объемной (в) калибровок
4*
100
ОБРАБОТКА МЕТАЛЛОВ ДАВЛЕНИЕМ
Автоматизация горячей объемной штамповки предъявляет к структуре технологического процесса определенные требования. Например, стремятся увеличить число переходов штамповки для снижения нагрузок на инструмент. При автоматической штамповке инструмент работает в более высоком темпе, интенсивно нагревается вследствие длительного контакта с горячим металлом и имеет, как правило, более сложную конструкцию.
Автоматизируют как отдельные этапы технологического процесса горячей объемной штамповки, так и весь его комплекс. Широко применяют средства автоматизации для подачи заготовок в нагревательные устройства, их нагрева, подачи нагретых заготовок к кузнечно-прессовым машинам. Наиболее трудные для автоматизации операции - подача и укладка заготовки в штамп, перенос ее из ручья в ручей, удаление поковки из штампа. Для некоторых из этих операций при штамповке на молотах применяют механические кантователи, поворачивающие заготовку вокруг оси в подкатных и протяжных ручьях; механические укладыватели заготовок в ручей штампа; механические съемники поковок и облоя у обрезных прессов.
Такие особенности горячештамповоч-ных кривошипных прессов, как постоянство хода ползуна, безударный характер нагрузки, наличие боковых окон в станине пресса, облегчают механизацию и автоматизацию штамповки. Существуют устройства (перекладчики) для передачи поковки из чернового в чистовой ручей и удаления ее из штампа и более сложные механизмы (манипуляторы) для подачи заготовок на штамп, их последовательного перемещения из ручья в ручей и удаления поковок из штампа. Эти устройства могут приводиться в действие от коленчатого вала пресса или от его ползуна.
В массовом производстве поковок шестерен, колец, гаек и тому подобных деталей массой до нескольких килограммов применяют автоматы для горячей
штамповки, производительность которых достигает 200 изделий в минуту.
По своей конструкции горячештампо-вочный автомат - кривошипный пресс, на ползуне которого закреплены пуансоны. Через систему зубчатых передач от коленчатого вала вращение передается на боковые распределительные валы, от которых приводятся в действие механизмы отрезки заготовок от прутка и их переноса между позициями штамповки. Автоматы, как правило, имеют три штамповочные позиции; штамповка производится одновременно на всех позициях с выдачей готовой поковки после каждого хода ползуна. Пруток подается в индукционный нагреватель, а из него непосредственно в автомат на позицию отрезки штучных заготовок. На первой позиции (рис. 3.43) происходит осадка отрезанной заготовки с целью ее уширения и удаления окалины; на второй - предварительная штамповка, на третьей окончательно формуется поковка с прошивкой отверстия; после прошивки отход проталкивается из нее под действием силы тяжести через наклонное отверстие, а поковка снимается с пуансона жестким съемником.
+
И
I
0
Ж
1
Va
ШШ
Рис. 3.43. Переходы штамповки на горяче-штамповочном автомате
ИЗГОТОВЛЕНИЕ ПОКОВОК МАШИНОСТРОИТЕЛЬНЫХ ДЕТАЛЕЙ
101
"Tryvi |
|
7/2 |
|
V^ |
|
|
|
т | |
YTTs. | 77? |
|
|
| ^\Ч |
|
|
Рис. 3.44. Схема автоматической линии для штамповки поковок коленчатых валов
В цехах горячей штамповки работают комплексные автоматические линии, на которых все этапы изготовления поковки автоматизированы. Например, одна из самых крупных автоматических линий для штамповки коленчатых валов (рис. 3.44) содержит индукционное нагревательное устройство /, ковочные вальцы 3, горя-чештамповочный пресс 4, обрезной пресс
5, выкрутной гидравлический пресс 6 и гидравлический пресс для правки поковок 7, установки для термической обработки 8 и для дробеструйной очистки поковок от окалины. Установки связаны между собой конвейерами Р; роботы 2 осуществляют подачу заготовок в зону деформирования, передачу поковки из ручья в ручей, уклад ку поковок на конвейер.
6. ЖИДКАЯ ШТАМПОВКА
Жидкой штамповкой называют технологический процесс получения заготовок деталей, при котором кристаллизация жидкого металла, залитого в полость инструмента, происходит под высоким давлением. Это обеспечивает повышение коэффициента теплоотдачи и, следователь-
но, скорости охлаждения, поэтому структура металла получается более мелкозернистой, чем в отливках. Кристаллизация под давлением и деформирование предотвращают образование усадочных раковин и газовой пористости (так как растворимость водорода растет с повышением давления). В соответствии с этим получают повышенные механические свойства поковок. Наличие высоких давлений улучшает заполнение полостей штампов и качество поверхности. Используют разные схемы технологического процесса штамповки. По основной схеме металл заливают в полость штампа 2 (рис. 3.45, а), соответствующую форме поковки, сжимают пуансоном / и производят, таким образом, кристаллизацию под давлением (рис. 3.45, б). Вторая схема предусматривает частичное затвердевание металла под давлением в полости, отличной от окончательной формы поковки; затем следует деформация в полужидком состоянии до получения окончательных размеров поковки. В третьем случае после полной кристаллизации давлением следует деформация в твердом состоянии для получения окончательных размеров поковки. Эту схему
102
ОБРАБОТКА МЕТАЛЛОВ ДАВЛЕНИЕМ
г |
| , 1 |
1 |
| 1 |
\.т |
|
а) б)
Рис. 3.45. Стадии процесса жидкой штамповки
надо отличать от встречающегося на производстве процесса горячей штамповки заготовки - отливки, кристаллизация которой происходила не под высоким давлением.
Выплавка и дозированная заливка металла в полость штампа - первая стадия технологического процесса при всех схемах технологического процесса жидкой штамповки.
Выплавку металла могут производить или в объеме, необходимом для получения одной поковки, или в плавильном агрегате большего объема (чем необходимо для штамповки одной поковки) с последующей дозировкой при заливке металла в штамп. Каждый из этих способов имеет свои преимущества и недостатки: в первом случае металл находится в расплавленном состоянии короткое время, что обеспечивает сохранение его химического состава, а плавильно-разливочные устройства с индукционным нагревом можно устанавливать на прессе непосредственно. В другом случае трудно поддерживать химический состав металла при длительной выдержке при температурах, выше температуры плавления; технически сложно дозировать жидкий металл на порции заданной массы. Однако необходимость плавления при первом способе каждой порции шихты с высокой скоростью (время расплавления 4 ... 10 мин) для поддер-
жания рабочего такта пресса требует индукционных нагревателей высокой мощности и большого расхода электроэнергии.
Для сталей считают предпочтительной выплывку в плавильно-разливных устройствах; для цветных металлов плавление и поддержание температуры расплавленного металла можно осуществлять в печах с большей емкостью.
При заливке очень важно поддерживать оптимальную температуру металла, достаточную для обеспечения его жидко-текучести и заполнения полости штампа и, с другой стороны, исключающую перегрев металла. Последний повышает термические нагрузки на инструмент и ухудшает структуру металла поковки. Необходимо исключить при заливке попадание шлаковых включений в расплавленный металл. Скорость заливки металла в штамп не должна быть излишне высокой, чтобы не разрушать рабочую поверхность штампа и исключить сварку заготовки со штампом. Для этого же используют защитное покрытие полости штампа на основе извести, графита, каолина и др.
Штамповку жидкого металла выполняют на специализированных гидравлических и фрикционных прессах. Специализация прессов обусловлена необходимостью большой скорости холостого хода; регулируемым, плавным нажимом на пуансон без резких скачков его пере-
ИЗГОТОВЛЕНИЕ ПОКОВОК МАШИНОСТРОИТЕЛЬНЫХ ДЕТАЛЕЙ
103
мещения; необходимостью наличия выталкивателей и возможности монтажа плавильно-заливочных устройств. При установке штампа на пресс должна обеспечиваться тепловая изоляция между ними.
Штампы для жидкой штамповки в большинстве случаев состоят из трех формообразующих частей: вкладыша 2 (рис. 3.45), выталкивателя 3 (образующих матрицу) и пуансона /, устанавливаемого на подвижном ползуне пресса. Большое значение имеет правильный зазор между пуансоном и матрицей, поскольку при большом зазоре возможно заклинивание, а при малом - приварка пуансона к вкладышу - матрице или задиры на контактирующих поверхностях. Материал штампов - чаще легированные молибденом стали; для цветных металлов рекомендуют углеродистые стали с максимальным содержанием углерода около 0,5 %.
Процесс штамповки - кристаллизация и последующая деформация металла в штампе - определяет качество полученной поковки. При этом важный параметр процесса - время от конца заливки матрицы жидким металлом до начала кристаллизации под необходимым минимальным давлением, а решающее условие получения качественной поковки - это время должно быть больше (или равно) времени подхода пуансона от верхнего исходного положения до закрытия штампа и времени, затрачиваемого на развитие минимально необходимого давления в полости штампа. Кристаллизация под таким давлением -определяющий фактор для формирования мелкозернистой, плотной структуры металла и повышения его механических свойств. Величину давления рекомендуют применять в диапазоне 100 ... 500 МПа, а время выдержки под давлением зависит от сложности и размеров поковки и составляет 2 ... Юс.
Область применения жидкой штамповки определяют прежде всего преимущества этого процесса перед литейной технологией и традиционными процесса-
ми горячей объемной штамповки. По сравнению с отливками поковки, изготовленные методом жидкой штамповки, обладают более высокими механическими и эксплуатационными характеристиками; более высокой точностью размеров, меньшим расходом металла (нет прибылей, литниковых систем и т.д.). В отличие от поковок, полученных традиционными способами горячей объемной штамповки, жидкой штамповкой изготовляют поковки как с толстыми, так и с тонкими стенками; без перемычек в отверстиях; с меньшим числом переходов; с меньшими затратами на механическую обработку и другими материально-энергетическими затратами.
Вместе с тем процесс жидкой штамповки требует больших затрат на инструмент, усугубляющихся его недостаточной стойкостью, особенно при штамповке стали. Так, число поковок, отштампованных на одном штампе из стали, составляет несколько сотен, а поковок из цветных металлов - несколько десятков тысяч.
Жидкой штамповкой производят для нужд машиностроения и приборостроения большое число разных по сложности поковок массой ориентировочно до 10 кг.
7. ХОЛОДНАЯ ОБЪЕМНАЯ ШТАМПОВКА
Обычно под холодной штамповкой понимают штамповку без предварительного нагрева заготовки. Для металлов и сплавов, применяемых при штамповке, такой процесс деформирования соответствует условиям холодной деформации. Отсутствие окисленного слоя на заготовках (окалины) при холодной штамповке обеспечивает хорошее качество поверхности детали и достаточно высокую точность размеров. Это уменьшает объем обработки резанием или даже исключает ее.
Основные разновидности холодной объемной штамповки - холодное выдавливание, холодная высадка и холодная штамповка в открытом штампе.
104
ОБРАБОТКА МЕТАЛЛОВ ДАВЛЕНИЕМ
в) г)
Рис. 3.46. Схемы выдавливания
При холодном выдавливании заготовку помещают в полость, из которой металл выдавливают в отверстия, имеющиеся в рабочем инструменте. Выдавливание обычно выполняют на кривошипных или гидравлических прессах в штампах, рабочими частями которых являются пуансон и матрица. Различают прямое, обратное, боковое и комбинированное выдавливание.
При прямом выдавливании (см. рис. 3.6, г) металл вытекает в отверстие, расположенное в донной части матрицы, в направлении, совпадающем с направлением движения пуансона относительно матрицы. Так можно получать детали типа стержней с утолщениями (болты, тарельчатые клапаны и т.п.). При этом зазор между пуансоном и цилиндрической частью матрицы, в которой размещается исходная заготовка, должен быть небольшой, чтобы металл не вытекал в зазор.
Если на торце пуансона (см. рис. 3.15, а) имеется стержень, перекрывающий отверстие матрицы до начала выдавливания, то металл выдавливается в кольцевую щель между стержнем и отверстием матрицы. В этом случае прямым выдавливанием можно получать детали типа трубки с фланцем, а если исходная заготовка имела форму толстостенной чашечки, то и детали в виде стакана с фланцем.
При обратном выдавливании направление течения металла противоположно направлению движения пуансона относи-
тельно матрицы. Наиболее часто встречающейся схемой обратного выдавливания является схема, при которой металл может вытекать в кольцевой зазор между пуансоном и матрицей (рис. 3.46, б). По такой схеме изготовляют полые детали типа туб (корпуса тюбиков), экранов радиоламп и т.п.
Реже применяют схему обратного выдавливания, при которой металл выдавливается в отверстие в пуансоне, для получения деталей типа стержня с фланцем (рис. 3.46, а).
При боковом выдавливании металл вытекает в отверстие в боковой части матрицы в направлении, не совпадающем с направлением движения пуансона (рис. 3.46, в). Таким образом можно получить детали типа тройников, крестовин и т.п. В этом случае, чтобы обеспечить удаление заготовок после штамповки, матрицу выполняют состоящей из двух половинок с плоскостью разъема, совпадающей с плоскостью, в которой расположены осевые линии заготовки и получаемого отростка.
Комбинированное выдавливание характеризуется одновременным течением металла по нескольким направлениям и может быть осуществлено по нескольким из рассмотренных ранее схем холодного выдавливания. На рис. 3.46, г приведена схема комбинированного выдавливания для изготовления обратным выдавливанием полой, чашеобразной части детали, а прямым выдавливанием - стержня, отходящего от ее донной части.
ИЗГОТОВЛЕНИЕ ПОКОВОК МАШИНОСТРОИТЕЛЬНЫХ ДЕТАЛЕЙ
105
Основной положительной особенностью выдавливания является возможность получения без разрушения заготовки весьма больших степеней деформации, которые можно характеризовать показателем к = Fo/F\ (F0 и Fx - площади поперечного сечения исходной заготовки и выдавленной части детали). Для весьма мягких, пластичных металлов А: > 100 (алюминиевые тубы со стенкой толщиной 0,1 ... 0,2 мм при диаметре тубы 20 ... 40 мм). Возможность получения столь больших степеней деформации обеспечивается тем, что пластическое деформирование при выдавливании происходит в условиях всестороннего неравномерного сжатия.
Однако то же всестороннее сжатие приводит и к отрицательным явлениям. Чем больше степень деформации, тем больше сила деформирования, и удельные силы, действующие на пуансон и матрицу, могут достичь значений, больших в несколько раз предела текучести деформируемого металла и превышающих значения, допустимые для инструмента по условиям его прочности или стойкости.
Высокие удельные силы выдавливания определяют достижимые степени деформации и сдерживают широкое применение этого процесса в производстве. Удельные силы выдавливания изменяются в ходе деформирования и зависят от высоты подвергающейся деформированию части заготовки. При выдавливании пластическая деформация обычно охватывает не весь объем заготовки, а лишь часть его - очаг деформации (см. рис. 3.46). До тех пор пока высота очага деформации меньше, чем высота деформируемой заготовки, удельные силы по ходу пуансона изменяются незначительно. Однако, когда высота деформируемой части заготовки становится меньше высоты естественного очага деформации, удельные силы начинают интенсивно возрастать. Это обстоятельство ограничивает допустимую (по условиям достаточной стойкости инструмента) толщину фланца или донышка штампуемой детали.
Для уменьшения удельной силы выдавливания при проектировании штампуемой детали необходимо стремиться к такой ее конфигурации, при которой отсутствовали бы застойные зоны под торцом пуансона (см. рис. 3.46, б) или у рабочей поверхности матрицы.
Основное технологическое мероприятие, направленное на снижение удельных сил выдавливания, - применение различных смазывающих материалов или покрытий заготовок для уменьшения сил трения. В обычных условиях выдавливания силы трения препятствуют пластическому истечению металла и существенно увеличивают силу деформирования.
Холодную высадку выполняют на специальных холодновысадочных автоматах. Штампуют от прутка или проволоки. Пруток подается до упора, поперечным движением ножа отрезается заготовка требуемой длины и с помощью специального механизма последовательно переносится в позиции штамповки, на которых из заготовки получают деталь.
На холодновысадочных автоматах штампуют заготовки диаметром 0,5 ... 40 мм из черных и цветных металлов, а также детали с местными утолщениями сплошные и с отверстиями (заклепки, болты, винты, гвозди, шарики, ролики, гайки, звездочки, накидные гайки и т.п.). На рис. 3.47 показаны последовательные переходы штамповки двух характерных деталей. Название этих автоматов связано с тем, что основной выполняемой на них операцией является высадка (уменьшение длины части заготовки с получением местного увеличения поперечных размеров). Однако при штамповке на холодновысадочных автоматах все шире используют другие операции штамповки сортового металла, в частности операцию холодного выдавливания, что расширяет номенклатуру изготовляемых деталей.
Штамповкой на холодновысадочных автоматах обеспечиваются достаточно высокая точность размеров и хорошее качество поверхности, вследствие чего неко-
106
ОБРАБОТКА МЕТАЛЛОВ ДАВЛЕНИЕМ
II
Рис. 3.47. Последовательность переходов изготовления деталей на холодновысадочных автоматах: а-винта, б-колпачка
торые детали не требуют последующей обработки резанием. Так, в частности, изготовляют метизные изделия (винты, болты, шпильки), причем и резьбу получают на автоматах обработкой давлением -накаткой.
Штамповка на холодновысадочных автоматах высокопроизводительна: 20 ... 400 деталей в минуту (большая производительность для деталей меньших размеров). Штамповка на холодновысадочных автоматах характеризуется высоким коэффициентом использования металла. Средний коэффициент использования металла 95 % (только 5 % металла идет в отход).
Холодная штамповка в открытых штампах заключается в придании заготовке формы детали путем заполнения полости штампа металлом заготовки. Схема холодной штамповки аналогична схеме горячей объемной штамповки, показанной на рис. 3.27, а.
Холодная объемная штамповка требует значительных удельных сил вследствие высокого сопротивления металла деформированию в условиях холодной деформации и упрочнения металла в процессе деформирования. Упрочнение сопровождается и уменьшением пластичности. Для уменьшения вредного влияния упрочнения и облегчения процесса деформирования при холодной штамповке оформление детали обычно расчленяют на переходы,
между которыми заготовку подвергают рекристаллизационному отжигу. Отжиг снижает удельные силы при штамповке на последующих переходах и повышает пластичность металла, что уменьшает опасность разрушения заготовки в процессе деформирования и увеличивает допустимую степень деформации.
Каждый последующий переход осуществляют в специальном штампе, хотя иногда несколько переходов выполняют в одном штампе. В последнем случае между переходами обрезают облой для уменьшения силы деформирования и повышения точности размеров штампованных деталей. Холодную объемную штамповку обычно осуществляют в открытых штампах, так как при этом удельные силы меньше, чем при штамповке в закрытых штампах (возможность вытекания металла в облой облегчает деформирование). В закрытых штампах в условиях холодной деформации штампуют реже и главным образом из цветных металлов.
Холодной объемной штамповкой можно изготовлять пространственные детали сложных форм (сплошные и с отверстиями). Холодная объемная штамповка обеспечивает также получение деталей со сравнительно высокими точностью размеров и качеством поверхности. Это уменьшает объем обработки резанием или даже исключает ее. Так как штампуют обычно
ПРОГРЕССИВНЫЕ ТЕХНОЛОГИИ ШТАМПОВКИ ДЕТАЛЕЙ ИЗ ПОРОШКОВ
107
за один ход ползуна пресса, то холодная штамповка (даже при использовании нескольких переходов со своими штампами) характеризуется большей производительностью по сравнению с обработкой резанием. Однако, учитывая, что изготовление штампов трудоемко и дороже изготовления инструмента, используемого при обработке резанием, холодную штамповку следует применять лишь при достаточно большой серийности производства.
Рекомендации по конструированию деталей применительно к изготовлению их холодной штамповкой сходны с рекомендациями, приведенными для ранее рассмотренной горячей объемной штамповки. Отметим, что допустимые углы наклона и радиусы скруглений обычно меньше, чем углы наклона и радиусы скруглений при горячей штамповке.
В будущем ожидается расширение области применения холодной объемной штамповки путем снижения удельных сил и применения более стойких инструментальных сталей для пуансонов и матриц.
ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ
Каким способом целесообразно изготовить поковку вала гидротурбины массой 3000 кг при величине партии 50 шт.?
Каковы будут основные технологические переходы процесса изготовления поковки крюка подъемного крана с габаритными размерами 200 х 150 х 50 мм при выпуске 5000 шт. в год?
Изобразите поковки одной и той же детали - кольца при трех вариантах их штамповки: в открытом штампе, в закрытом с одной плоскостью разъема, в закрытом штампе с двумя плоскостями разъема.
Из каких соображений выбирают плоскость разъема штампов при проектировании поковки?
Для поковок всех деталей, изображенных на рис. 3.19, выберите рациональный способ штамповки и штамповочное оборудование в условиях крупносерийного производства.
Сравните распределение твердости в тарелке и стержне клапана, полученного холодным выдавливанием, и в головке и стержне болта, полученного холодной высадкой, если заготовкой в обоих случаях был горячекатаный стальной пруток.
- Глава I Современное металлургическое производство
- Глава II Производство чугуна
- Глава III Производство стали
- Глава IV Производство цветных металлов
- Глава I Общая характеристика и физико-механические основы обработки металлов давлением
- Глава II Изготовление машиностроительных профилей
- Глава III Изготовление поковок
- Глава IV Прогрессивные технологии
- Глава V
- Глава VI Технико-экономические показатели и
- Глава I Общая характеристика литейного производства
- Глава II Физические основы производства отливок
- Глава III Изготовлени формах
- Глава IV Изготовление отливок специальными способами литья
- 4.1. Технологические возможности способов изготовления отливок
- Глава V Изготовление отливок из различных сплавов
- 4.2. Химический состав никелевых жаропрочных сплавов и их длительная прочность
- Глава VI Технологичность конструкций литых деталей
- Глава I Физические основы получения сварного соединения
- Глава II
- Глава III
- Глава IV Лучевые способы сварки
- Глава V
- Глава VI
- Глава VII Нанесение износостойких и жаропрочных покрытий
- Глава VIII Технологические особенности сварки различных металлов и сплавов
- Глава IX
- Глава X Контроль сварных и паяных соединений
- Глава XI Технологичность
- Глава I Физико-механические основы обработки конструкционных материалов резанием
- 6.1. Обрабатываемость конструкционных материалов резанием
- Глава II Инструментальные материалы
- Глава III Металлорежущие станки
- 6.2. Классификация металлорежущих станков
- Глава IV
- Глава V
- Глава VI Обработка заготовок на станках сверлильно-расточной группы
- Глава VII Обработка заготовок на станках строгально-протяжной группы
- Глава VIII Обработка заготовок на станках фрезерной группы
- Глава IX Обработка заготовок
- Глава X Обработка заготовок
- Глава XI Методы отделочной обработки поверхностей
- Глава XII Методы обработки заготовок без снятия стружки
- Глава I Физико-технологические основы
- Глава II Изготовление изделий
- Глава III Изготовление деталей
- 8.1. Классификация композиционных порошковых материалов
- Глава IV Изготовление деталей
- Глава IV Изготовлени технических
- Глава VI Технологические особенности проектирования и изготовления деталей из композиционных материалов
- Раздел 1. Свойства металлов и сплавов, применяемых в
- Раздел 2. Производство черных
- Глава I. Современное металлургиче ское производство 25
- Глава III. Производство стали 32
- Глава III. Изготовление отливок в
- Глава IV. Изготовление отливок спе циальными способами литья 179
- Глава V. Изготовление отливок нз
- Глава VI. Технологичность конст рукций литых деталей 214
- Глава III. Металлорежущие станки ... 326
- Глава IV. Автоматизация производ ства в цехах с металлорежущим обо рудованием 335
- Глава V. Обработка заготовок иа станках токарной группы 345
- Глава VI. Обработка заготовок иа стайках сверлильно-расточной группы 361
- Глава VII. Обработка заготовок на станках строгально-протяжной группы 377
- Глава VIII. Обработка заготовок на станках фрезерной группы 386
- Глава IX. Обработка заготовок на зубообрабатывающнх станках 399
- Глава XI. Методы отделочной обра ботки поверхностей 421
- Глава XII. Методы обработки загото вок без снятия стружки 434
- Раздел 7. Электрофизические и электрохимические мето ды обработки 442