logo
ткм

Глава IV Лучевые способы сварки

1. ЭЛЕКТРОННО-ЛУЧЕВАЯ СВАРКА

Электронный луч представляет собой сжатый поток электронов, перемещаю-

щийся с большой скоростью от катода к аноду в сильном электрическом поле. При соударении электронного потока с твер­дым телом более 99 % кинетической энер­гии электронов переходит в тепловую,

ЛУЧЕВЫЕ СПОСОБЫ СВАРКИ

243

расходуемую на нагрев этого тела. Темпе­ратура в месте соударения может дости­гать 5000 ... 6000 °С. Электронный луч образуется за счет эмиссии электронов с нагретого в вакууме [133(10"4 ... 10~5) Па] катода, с помощью электростатических и электромагнитных линз фокусируется на поверхности свариваемых материалов (рис. 5.15).

В установках для электронно-лучевой сварки электроны, испускаемые катодом / электронной пушки, формируются в пучок электродом 2, расположенным непосредст­венно за катодом, ускоряются под действи­ем разности потенциалов между катодом и анодом 5, составляющей 20 ... 150 кВ и выше, затем фокусируются в виде луча и направляются специальной отклоняющей магнитной системой 5 на обрабатываемое изделие б. На формирующий электрод 2 подается отрицательный или нулевой по отношению к катоду потенциал. Фокуси­ровкой достигается высокая удельная мощность луча (5 • 105 кВт/м2 и выше). Ток электронного луча невелик - от не­скольких миллиампер до единиц ампер.

При перемещении заготовки под не­подвижным лучом образуется сварной шов. Иногда при сварке перемещают сам луч вдоль неподвижных кромок с помо­щью отклоняющих систем. Отклоняющие

системы используют также и для колеба­ний электронного луча поперек и вдоль шва, что позволяет сваривать с примене­нием присадочного металла и регулиро­вать тепловое воздействие на шов.

В современных установках для сварки, сверления, резки или фрезерования элек­тронный луч фокусируется на площади диаметром менее 0,01 см, что позволяет получить большую удельную мощность.

При сварке электронным лучом тепло­та выделяется непосредственно в самом металле, который, частично испаряясь, оттесняет расплав в сторону, противопо­ложную направлению сварки. Форма шва приобретает очертания F\, называемые "кинжальным" проплавлением. Отноше­ние глубины проплавления к ширине мо­жет достигать 20 : 1 (рис. 5.16).

При сварке менее концентрированны­ми источниками нагрева - дуговой, газо­вой, - когда нагрев и расплавление метал­ла происходят главным образом за счет теплопроводностных процессов, этот ко­эффициент обычно равен 1 : 1, 1 : 2, а фор­ма сварного шва в сечении приближается к равнобедренному треугольнику (F2).

Высокая концентрация теплоты в пят­не нагрева позволяет испарять такие мате­риалы, как сапфир, рубин, алмаз, стекло, образуя в них отверстия. Незначительная ширина шва и нагретой зоны основного металла способствует резкому снижению деформаций сварного соединения. Кроме того, проведение процесса в вакууме обеспечивает получение зеркально-чистой поверхности шва и дегазацию расплав­ленного металла.

Г"

Рис. 5.15. Схема установки для электронно­лучевой сварки

Рис. 5.16. Формы проплавления при дуговой F2 и электронно-лучевой сварке F\

244

СВАРОЧНОЕ ПРОИЗВОДСТВО

Электронно-лучевой сваркой изготов­ляют детали из тугоплавких химически активных металлов и их сплавов (вольф­рамовых, танталовых, ниобиевых, цирко­ниевых, молибденовых и т.п.), а также из алюминиевых и титановых сплавов и вы­соколегированных сталей. Металлы и сплавы можно сваривать в однородных и разнородных сочетаниях, со значительной разностью толщин, температур плавления и других теплофизических свойств. Ми­нимальная толщина свариваемых загото­вок составляет 0,02 мм, максимальная - до 100 мм.

Электронно-лучевой сваркой можно соединять малогабаритные изделия, при­меняемые в электронике и приборострое­нии, и крупногабаритные изделия длиной и диаметром несколько метров.

2. ЛАЗЕРНАЯ СВАРКА

Применяемый для расплавления ме­талла при сварке лазерный луч представ­ляет собой вынужденное монохроматиче­ское излучение, длина волны которого зависит от природы рабочего тела лазера-излучателя и может быть в диапазоне 0,1 ... 1000 мкм. Оно возникает в резуль­тате вынужденных скачкообразных пере­ходов возбужденных атомов рабочих тел лазеров на более низкие энергетические уровни. При этом возбужденный атом от­дает энергию в виде фотонов с частотой, свойственной материалу применяемого рабочего тела. Испускание света можно

инициировать воздействием внешнего фотона, обладающего энергией, соответ­ствующей разнице энергий атомов в воз­бужденном и нормальном состояниях. В результате такого воздействия генери­руются два фотона с одинаковой частотой, которые распространяются в направлении вектора внешнего фотона.

Одновременно может протекать и об­ратный переход. Поэтому для получения заметной генерации вынужденного излу­чения необходимо добиваться такого со­стояния рабочих тел, при котором прева­лировали бы переходы с возникновением новых фотонов. Этого состояния искусст­венно достигают воздействием различных источников энергии - световой, тлеющего электрического разряда, химических про­цессов и др., с помощью которых произ­водят так называемую "накачку" рабочих тел.

В твердотельных лазерах (рабочее тело -рубин, стекло с неодимом и др.) накачка, как правило, производится специальными источниками излучения 3, направленными на рабочее тело / отражателем 4 (рис. 5.17). Для направления излучения и усиления генерации активный элемент помещают между двумя точно установленными зер­калами-отражателями - резонаторами 2, один из которых в целях вывода излуче­ния из лазера делается полупрозрачным. Вышедшее из лазера излучение фокусиру­ется специальной оптической системой 5 и в виде луча направляется на обрабаты­ваемый объект 6.

Рис. 5.17. Устройство излуча­теля твердотельного лазера: / - рабочее тело - кристалл; 2 -зеркала резонаторов; 3 - лампа накачки; 4 - отражатель; 5 -фокусирующая линза; 6 - обра­батываемая деталь

ЛУЧЕВЫЕ СПОСОБЫ СВАРКИ

245

Наиболее часто используемые на прак­тике лазеры имеют следующие длины волн: гелий-неоновый 0,6328 мкм, руби­новый 0,6943 мкм, стекло с ниодимом 1,06 мкм, С02-лазеры 10,6 мкм. Чем меньше длина волны лазерного излучения, тем больше его способность беспрепятст­венно проходить через вещество.

Лазерное излучение обладает большой степенью "упорядоченности", так как в лазере фотоны излучаются атомами одно­го вещества под действием однонаправ­ленных импульсов-возбудителей. Коге­рентность его, характеризуемая идентич­ностью состояния фотонов, их энергией, направлением, степенью поляризации на несколько порядков выше, чем обычного светового. Поэтому лазерный луч может быть сфокусирован в пятно от десятых долей миллиметра до десятков микромет­ров, что позволяет получать плотности мощности свыше 108 Вт/см2.

Твердотельные лазеры обычно имеют относительно небольшую мощность: рабо­тающие в непрерывном режиме не свыше 250 ... 500 Вт; в импульсно-периодическом или импульсном - до 300 Вт. Однако энер­гия одиночного импульса может достигать 100 Дж и более, что обеспечивает плот­ность мощности в фокусе свыше 109 Вт/см2.

Для получения непрерывного излуче­ния большей мощности (5 ... 10 кВт и бо­лее) применяют так называемые газовые лазеры. Рабочим веществом у них чаще всего является СОг, который в смеси с аргоном и гелием специальными насосами прогоняется через разрядную камеру с тлеющим электрическим разрядом. В ка­мере происходит возбуждение молекул С02. В резонаторной камере энергия воз­бужденных частиц формируется в свето­вой поток большей мощности, который выводится наружу, фокусируется и на­правляется на обрабатываемую поверх­ность материала.

Лазерный луч при встрече с препятст­вием (обрабатываемым материалом) час­тично отражается от его поверхности, час-

тично ею поглощается, переходя в тепло­ту. Для увеличения доли полезно исполь­зуемой энергии нужно повышать коэффи­циент поглощения. Для этого перед обра­боткой таких материалов, у которых от­ражательная способность велика (Ag, Си, А1 и др.), поверхность покрывают специ­альными "зачерняющими" покрытиями.

Основными параметрами режимов ла­зерной обработки являются мощность из­лучения, диаметр пятна фокусировки, скорость перемещения обрабатываемого материала относительно луча.

Преимуществами лазерной сварки яв­ляются возможность вести процесс на больших скоростях - до 500 м/ч, узкий ("ниточный", "кинжальный") шов, чрез­вычайно малая зона разогрева, практиче­ски отсутствие деформаций изделия после сварки.

В результате расплавления металличе­ских деталей по примыкающим поверхно­стям под действием мощного лазерного излучения и последующей кристаллиза­ции этого расплава образуется сварное соединение, основанное на межатомном взаимодействии. Таким образом, лазерная сварка, как и дуговая, плазменная и элек­тронно-лучевая, относится к методам сварки плавлением высококонцентриро­ванными источниками энергии.

Для осуществления процесса сварки требуются плотности мощности лазерного излучения в зоне обработки порядка 105 ... 107 Вт/см2 при длительности воз­действия 103 ... 10"2 с. Сварку можно про­водить в непрерывном, импульсном и ква­зинепрерывном (импульсно-периодичес­ком с высокой частотой следования им­пульсов) режимах, а также в различных пространственных положениях. Приме­няют сварку с присадкой и без присадки. Различают сварку малых толщин (глубина проплавления до 1 мм) и сварку с глубо­ким проплавлением.

Сварку малых толщин можно осущест­влять как в непрерывном, так и в им­пульсном режимах. При плотностях мощ­ности в зоне воздействия 105... 10б Вт/см2,

246

СВАРОЧНОЕ ПРОИЗВОДСТВО

требуемых для осуществления этого про­цесса, происходит только плавление мате­риала без его существенного испарения. Применяют как газовые, так и твердотель­ные лазеры мощностью менее 1 кВт в не­прерывном режиме и энергией в импульсе порядка единиц или десятков джоулей в импульсном. В непрерывном режиме про­водят шовную сварку, а в импульсном -шовную и точечную, причем шов в этом случае образуется в виде совокупности сварных точек.

Малые толщины можно сваривать со сквозным проплавлением, когда шов обра­зуется по всей толщине свариваемых уча­стков деталей, и без сквозного проплавле-ния. Тонкие детали с массивными можно сваривать внахлестку со сквозным про­плавлением тонкой и несквозным про­плавлением массивной деталей.

Применение твердотельных лазеров для сварки металлов малых толщин по­зволяет производить обработку с больши­ми скоростями по сравнению с примене­нием С02-лазеров той же мощности, что объясняется более эффективным поглоще­нием металлами излучения с меньшей дли­ной волны. При импульсном режиме излу­чения лазера скорость обработки меньше, чем при непрерывном, но в этом случае эффективность использования энергии, а соответственно, и КПД процесса сварки гораздо выше, что связано с отсутствием эффекта экранирования излучения.

Процесс лазерной сварки малых тол­щин можно осуществлять как в автомати­ческом, так и в ручном режимах.

Лазерную сварку малых толщин широ­ко применяют в электронной и радиотех­нической промышленности для сварки проводов, элементов микросхем, пружин и т.п. деталей, в производстве и при ремонте вакуумных приборов (кинескопов, элек­тронно-лучевых трубок и т.д.), герметиза­ции корпусов различных приборов и уст­ройств и во многих других процессах. В этой отрасли все чаще для сварки при­меняют полупроводниковые лазеры, а также мощные некогерентные источники

излучения, например ксеноновые лампы. В других отраслях промышленности ла­зерную сварку малых толщин применяют для заваривания аэрозольных баллонов и консервных банок, герметизации капсул для лекарств, сварки деталей турбин, со­товых конструкций и др.

Сварку с глубоким проплавлением осуществляют при плотностях мощности излучения порядка 107 Вт/см2. Если при сварке малых толщин необходима концен­трация энергии в одной точке (случай ост­рой фокусировки излучения), то при свар­ке с глубоким проплавлением требуется высокая плотность мощности на доста­точно значительном продольном участке пучка. Для достижения требуемых высо­ких плотностей мощности в зоне обработ­ки применяют более мощные лазеры с выходной мощностью в несколько кило­ватт. Сварку с глубоким проплавлением можно осуществлять как в непрерывном, так и в квазинепрерывном режимах. Ее выполняют в основном мощными непре­рывными С02-лазерами или импульсно-периодическими твердотельными лазера­ми. В последнем случае, как и при сварке малых толщин, энергетическая эффектив­ность процесса выше, но скорость обра­ботки меньше.

Лазерная сварка с глубоким проплав­лением может быть со сквозным проплав­лением (например, сварка листовых нена-груженных конструкций) и с несквозным проплавлением (например, при соедине­нии тонких деталей с массивными).

Эффективность сварки с глубоким проплавлением повышается при совмест­ном действии лазерного излучения и дру­гого, менее дорогостоящего источника нагрева, например электрической дуги или магнитного поля. Суммарный эффект та­кого воздействия выше, чем сумма эффек­тов воздействия каждого источника неза­висимо друг от друга. В этом случае воз­можно применение менее мощного лазера или повышение скорости обработки.

Повышению эффективности процесса сварки с глубоким проплавлением также

ЛУЧЕВЫЕ СПОСОБЫ СВАРКИ

247

способствует подготовка свариваемых кромок - их предварительная разделка, что приводит к "заневоливанию" лазерно­го излучения.

В отличие от сварки малых толщин ла­зерную сварку с глубоким проплавлением можно проводить только в автоматическом режиме. Для контроля за ходом процесса используют калориметрические и фото­электрические датчики, связанные с систе­мой автоматического управления парамет­рами излучения, положением обрабаты--ваемой детали, скоростью обработки.

Лазерную сварку с глубоким проплав­лением широко используют в производст­ве крупногабаритных корпусных деталей, например, двигателей и обшивки самоле­тов, автомобилей и судов; валов и осей, работающих в условиях знакопеременных нагрузок, например, карданных валов ав­томобиля; при изготовлении деталей ме­ханизмов и машин, состоящих из разных материалов (например, из легированных сталей и более дешевых материалов); для сварки труб, арматурных конструкций и в ряде других производств. Преимущества лазерной сварки с глубоким проплавлени­ем особенно заметно проявляются при сварке углеродистых и легированных ста­лей, алюминиевых, магниевых, титановых и никелевых сплавов.

По сравнению с электронно-лучевой сваркой лазерная сварка не требует специ­альных вакуумных камер, что позволяет расширить номенклатуру размеров обра­батываемых деталей. С другой стороны, электронное излучение обладает большей "проникающей способностью", что позво­ляет сваривать изделия значительно большей толщины. Комплексное сравне­ние этих методов по технологическим и экономическим характеристикам показа­ло, что при мощностях излучения до 4 кВт (сварка различных металлов толщиной до 5 мм) преимущество лазерных методов сварки несомненно. Если же необходима мощность излучения более ] 0 кВт (сварка металлов толщиной более 10 мм), то эко­номически выгоднее использовать элек-

тронно-лучевую сварку. В промежуточном диапазоне требуемых мощностей источни­ков излучения необходимо более детальное сравнение конкретных технологических процессов и условий производств.

Лазерная сварка с глубоким проплав­лением требует высокой точности и ста­бильности направления воздействия ла­зерного излучения, например, допуск на отклонение оси лазерного пучка может составлять 0,2 мм при длине сварного шва в несколько метров. Необходима также тщательная сборка деталей под лазерную сварку: зазор при сборке деталей под сварку должен быть, как правило, менее 0,3 мм. Для этого требуется тщательная подготовка кромок свариваемых деталей, поэтому часто лазерной сварке предшест­вует либо лазерная резка (раскрой) мате­риалов, обеспечивающая требуемое каче­ство кромок, либо механическая обработ­ка с большой точностью.

Высокое качество сварного шва, полу­ченного с помощью лазерного излучения, в ряде случаев позволяет исключить его последующую обработку.

Большая плотность мощности, дости­гаемая в остросфокусированном лазерном луче (значительно выше, чем в сварочной дуге, и на порядок выше, чем в электрон­ном луче), позволяет получать особые эф­фекты при обработке материалов. Напри­мер, можно достичь скоростей нагрева нескольких десятков и даже сотен тысяч градусов в секунду. Металл в этих услови­ях может интенсивно испаряться. Такие режимы используются для прошивки от­верстий или при резке.

Интенсивный сосредоточенный нагрев обычно обусловливает и чрезвычайно большую скорость охлаждения материала после прекращения воздействия луча (ты­сячи градусов в секунду). Можно создать условия охлаждения, при которых обраба­тываемый материал после расплавления охлаждается с такой скоростью, что про­цессы кристаллизации с образованием упорядоченной структуры происходить не успевают; при затвердевании образуется

248

СВАРОЧНОЕ ПРОИЗВОДСТВО

Газовая сварка и термическая резка

аморфный слой, обладающий специфиче­скими свойствами.

В то же время расфокусированный ла­зерный луч может быть и очень "мягким", что позволяет его использовать в качестве универсального источника нагрева для свар­ки, резки, наплавки, термообработки и др.

ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ

1. Какие особенности электронно-лучевой сварки позволяют получать качественные со-

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4