Структура и свойства сердцевины детали
При выборе материала для деталей необходимо учитывать и экономическую сторону. Чем более легирована сталь, тем она дороже. Основные назначения легирующих элементов — увеличение прокаливаемости, т. е. получение высокого комплекса механических свойств в крупных сечениях. Поэтому легирование стали следует применять для деталей крупных сечений.
Наиболее дефицитными элементами, применяемыми для легирования конструкционных сталей, являются никель и молибден. Эти элементы увеличивают прокаливаемость, так же, как и другие менее дефицитные (хром, марганец). Никель понижает порог хладноломкости, вследствие чего сталь становится более надежной. Молибден устраняет охрупчивание стали при высокотемпературном отпуске.
При назначении марки стали для деталей следует также учитывать способ ее металлургического производства.
Поэтому при выборе марки стали необходимо решить, что в данном конкретном случае более целесообразно применить сталь более высокой чистоты и удовлетвориться свойствами металла, полученными в состоянии поставки или после простейшей термической обработки (нормализации), или ориентироваться на термическое улучшение (закалка плюс соответствующий отпуск). При назначении режима термической обработки необходимо выбирать наиболее производительные и экономические способы, но обеспечивающие получение оптимальных, наилучших свойств.
Пример решения типовой задачи.
Задача. Необходимо изготовить вал двигателя диаметром 75 мм, работающего с вибрациями; сталь в готовом изделии должна иметь предел прочности не ниже 800 МПа, ударную вязкость не ниже 60 Дж/см2. Подобрать необходимую марку стали, рекомендовать режим термической обработки, привести механические свойства и микроструктуру стали в готовом изделии.
Решение. Для изготовления изделий подобного назначения можно использовать сталь углеродистую качественную конструкционную (ГОСТ 1050 — 84) или сталь легированную конструкционную (ГОСТ 4543 — 81) с содержанием углерода 0,4...0,45%.
Обратимся вначале к стали углеродистой качественной. Сталь 45 в состоянии поставки или после нормализации имеет предел прочности при растяжении 610 МПа, ударную вязкость 30 Дж/см2, что не удовлетворяет требованиям прочности и вязкости для материала вала.
Для повышения прочности конструкционной стали 45 можно применить закалку и высокий отпуск. Для этой стали после закалки и отпуска с нагревом до 500° ударная вязкость повышается до 60 Дж/см2, а предел прочности до 750...850 МПа. После закалки (с охлаждением в воде) углеродистая сталь 45 получает структуру мартенсита. Однако вследствие небольшой прокаливаемости углеродистой стали эта структура в изделиях диаметром более 20...25 мм образуется только в сравнительно тонком поверхностном слое (толщиной до 2...4 мм).
В следующем слое аустенит в процессе охлаждения при закалке распадается от тростита или сорбита, а в середине изделия аустенит распадается с образованием структуры феррит плюс перлит. Чем больше сечение изделия, тем относительно больше масса металла, получающего структуру перлит и феррит и не воспринимающего, следовательно, закалку.
Последующий отпуск будет способствовать превращению мартенсита и тростита в сорбит в тонком поверхностном слое, но не воздействует на структуру и свойства перлита и феррита в основной массе изделия.
Таким образом, вал диаметром 75 мм, изготовленный из углеродистой стали, не будет иметь одинаковых свойств по сечению: они будут выше в тонком поверхностном слое и ниже в сердцевине. Хотя в работе основные нагрузки будут воспринимать поверхностные слои вала, надо учитывать и следующее:
1) чем больше сечение вала, тем тоньше (2...4 мм) поверхностный слой со структурой сорбита;
2) часть поверхностного слоя будет снята при окончательной чистовой обработке вала на станке, выполняемой после закалки и отпуска. Поэтому для изготовления вала сталь 45 не пригодна.
Рассмотрим сталь 45ХН. Сталь легирована никелем и хромом, т. е. элементами, повышающими прокаливаемость. Эта сталь получает после закалки достаточно однородную структуру и механические свойства и прокаливается в сечении диаметром до 80 мм. Следовательно, при изготовлении вала диаметром 75 мм из стали 45ХН может быть обеспечена сплошная прокаливаемость по сечению.
Режим термической обработки стали 45ХН таков:
1. Закалка — нагрев до 830...850° С и охлаждение в масле.
При закалке вала из стали 45ХН с охлаждением в масле (а не в воде, как это требуется для углеродистой стали) возникают меньшие остаточные напряжения, а следовательно, и меньшая деформация. Структура стали после закалки — мартенсит; твердость НКС не ниже 56.
2. Отпуск — с нагревом до 550...580" С. Для предупреждения отпускной хрупкости вал после отпуска следует охлаждать в масле или в воде. Структура стали после отпуска — сорбит.
Механические свойства стали 45ХН в изделии диаметром 75 мм после указанной термической обработки представлены в табл. 5.7.
Таблица 5.7
- Технологические процессы и производства (теоретический курс) введение
- Технологическая подготовка производства (тпп)
- Общие положения
- 1.1.1. Порядок проведения технологической подготовки производства
- Содержание работ типовой схемы организации тпп при технологическом обеспечении
- Технологическая подготовка производства при проектировании изделия
- 1.1.2. Типы производства, формы организации и виды технологических процессов Типы производства
- Формы организации технологических процессов
- Виды технологических процессов
- 1.2. Структура технологического процесса и его основные характеристики
- Маршрут изготовления вала
- Характеристики технологического процесса
- 1.3. Основные принципы технологического проектирования
- 1.4. Технологические процессы сборки
- 2. Точность механической обработки
- 2.1. Точность и ее определяющие факторы
- 2.2. Статистические методы исследования точности механической обработки
- 2.2.1. Метод кривых распределения погрешностей
- 2.2.2. Графоаналитический метод (метод точечных диаграмм)
- 2.3. Расчетно-статистический метод исследования точности
- 2.3.1. Погрешности установки. Стандарты по базированию и установочным элементам
- Основные рекомендации о порядке выбора баз и решаемые при этом задачи
- Условные обозначения опор
- Погрешность положения заготовки εпр, вызываемая неточностью приспособления
- 2.3.2. Упругие деформации технологической системы
- 2.3.3. Износ режущего инструмента
- Начальный uн и относительный u0, износ режущих инструментов при чистовом точении и растачивании
- 2.3.4. Тепловые деформации технологической системы
- Зависимость удлинения резца от различных факторов
- Тепловые деформации станков
- Тепловые деформации изготавливаемой детали
- 2.3.5. Геометрические неточности станков и режущего инструмента
- Классификация станков по точности
- 2.3.6. Деформации заготовок, вызываемые внутренними напряжениями
- 2.3.7. Размерная наладка станков
- Наладка методом пробных стружек и промеров
- Размерная наладка по пробным деталям
- Рекомендации по размерной наладке методом пробных деталей
- Размерная наладка по калибрам наладчика
- Статическая наладка
- 2.3.8. Колебания при механической обработке
- Методы борьбы с колебаниями
- 2.3.10. Управление точностью механической обработки
- 3. Качество поверхностного слоя деталей
- 3.1. Критерии качества поверхностного слоя
- 3.2. Влияние технологических факторов на величину шероховатости
- 4. Определения припусков для механической обработки
- Расчетная длина заготовки при определении
- 5. Проектирование технологических процессов механической обработки
- 5.1. Типизация технологических процессов
- 5.2. Групповой метод обработки
- 5.2.1. Группирование деталей
- 5.2.2. Комплексная деталь
- 5.3. Модульная технология
- 5.4. Последовательность и правила проектирования технологических процессов изготовления деталей
- 5.4.1. Анализ исходных данных для разработки технологического процесса
- Соотношения между допусками размера, формы и параметрами шероховатости цилиндрических поверхностей
- Анализ технологичности изделий
- Требования к технологичности формы детали
- Примеры технологичных и нетехнологичных конструкций
- Выбор материала заготовки
- Технологические свойства сталей
- Коэффициенты обрабатываемости резанием различных материалов
- Значения критического диаметра Dk прокаливаемости
- Структура и свойства сердцевины детали
- Механические свойства стали 45хн после то
- Наличие удобных и надежных баз
- 5.4.2. Определение типа производства
- Годовая программа выпуска деталей по типам производств
- Организационно-технические характеристики типов производства
- 5.4.3. Определение класса детали и выбор в качестве аналога действующего типового или группового технологического процесса
- Пример декодирования и укрупненного анализа
- 5.4.4. Выбор исходной заготовки и методов ее изготовления
- Характеристика основных методов получения заготовок литьем
- Характеристика основных методов получения заготовок обработкой давлением
- 5.4.5. Выбор технологических баз
- 5.4.6. План обработки отдельных поверхностей
- Основные методы и виды обработки наружных цилиндрических поверхностей
- 5.4.7. Проектирование технологического маршрута обработки заготовки
- Этапы технологического процесса
- Этапы обработки
- 5.4.9. Нормирование технологических операций
- 6. Типовые технологические
- 6.1. Технология изготовления валов
- 6.1.1. Характеристика валов
- Технологические задачи
- Форма и размеры центровых отверстий
- 6.1.4. Методы обработки наружных цилиндрических поверхностей
- 6.1.4.1. Методы предварительной обработки наружных цилиндрических поверхностей
- Обработка на токарно-карусельных станках
- Обработка на токарно-револьверных станках
- 6.1.4.2. Методы чистовой обработки наружных цилиндрических поверхностей
- Шлифование
- 6.1.4.3. Методы повышения качества поверхностного слоя деталей
- 6.1.5. Обработка на валах элементов типовых сопряжений
- 6.1.5.1. Обработка на валах шпоночных пазов
- 6.1.5.2. Обработка на валах шлицев
- 6.1.5.3. Обработка на валах резьбовых поверхностей
- 6.1.6. Типовые маршруты изготовления валов
- 6.1.6.1. Примеры типовых маршрутов изготовления ступенчатых шлицевых валов
- 6.3. Технология изготовления корпусных деталей
- 6.3.1. Характеристика корпусных деталей
- 6.3.2. Материал и заготовки для корпусных деталей
- 1.3.3. Основные схемы базирования
- 6.3.4. Методы обработки плоских поверхностей
- 6.3.4.1. Обработка плоских поверхностей лезвийным инструментом
- 6.3.4.2. Обработка плоских поверхностей абразивным инструментом
- 6.3.5.1. Пример типового маршрута изготовления кронштейна
- 6.4. Технология изготовления зубчатых колес
- 6.4.1. Характеристика зубчатых колес
- 6.4.2. Материалы и заготовки зубчатых колес
- 6.4.3. Основные схемы базирования
- 6.4.4.1. Нарезание зубчатых колес методом копирования
- 6.4.4.2. Нарезание зубчатых колес методом обкатки
- 6.4.4.3. Накатывание зубчатых колес
- 6.4.4.4. Обработка торцовых поверхностей зубьев зубчатых колес
- 6.4.4.5. Методы отделочной обработки зубьев зубчатых колес
- 6.4.5. Типовые маршруты изготовления зубчатых колес
- 6.4.5.1. Пример типового маршрута изготовления зубчатого колеса
- 7. Автоматизация технологической подготовки производства
- 8. Оформление технологической документации
- 8.1. Маршрутная карта
- Сведения, вносимые в отдельные графы и строки маршрутной карты
- 8.2. Операционная карта
- 8.3. Карта эскизов
- 8.4. Документы технического контроля
- Информация, вносимая в карту технического контроля