Классификация станков по точности
В настоящее время начата разработка станков сверх особо высокой точности, которые относят к группам точности Т и К. Погрешности обработки на станках этих групп не должны превышать величины 0,3 мкм для группы Т и 0,1 мкм для группы К.
К основным характеристикам геометрической точности станков относят:
— радиальное и торцевое биение шпинделей;
— биение конического отверстия в шпинделе;
— прямолинейность и параллельность направляющих;
— параллельность осей шпинделей токарных станков направлению движения кареток в вертикальной и горизонтальной плоскости;
— перпендикулярность осей шпинделей сверлильных станков относительно плоскости столов и др.
Данные о фактических погрешностях заносятся в паспорт станка при его испытаниях и обновляются после проведения ремонтов и пригонок в процессе эксплуатации. Геометрические погрешности станков являются постоянными величинами и не влияют на точность размеров обрабатываемых поверхностей, однако способствуют искажению их форм и относительного расположения, поэтому они должны быть учтены при назначении способа обработки. Следует иметь в виду, что точность деталей станков и их взаимного положения должны быть выше требований к точности изготавливаемой детали.
Так, стандарты предусматривают следующие предельные значения для некоторых геометрических погрешностей станков:
— радиальное и осевое биение шпинделя для токарного станка нормальной точности (Н) — 10 мкм;
— прямолинейность продольного перемещения суппорта — 12 мкм на длине 500 мм и 16 мкм на длине 800 мм.
— для станков нормы точности А и С необходимо обеспечивать постоянство температуры в производственных помещениях.
Необходимо иметь в виду, что стандартом определяются нормы точности для новых станков. Для станков, находящихся в эксплуатации необходимо вводить корректировки в эти нормы при расчете точности, учитывающие степень износа узлов станка. Так, износ направляющих токарных станков, используемых для чистовой обработки, за один год составляет 0,04...0,05 мм, а для черновой 0,10...0,20 мм. Обычно максимальный износ направляющих станка имеет место вблизи патрона.
Погрешности геометрической точности станков полностью или частично переносятся на обрабатываемые заготовки в виде систематических погрешностей. Например, отклонение от параллельности оси шпинделя токарного станка направлению движения суппорта в горизонтальной плоскости приводит к появлению конусообразности у обрабатываемой заготовки; в вертикальной плоскости — к гиперболоиду вращения.
Биениешпинделятокарных и круглошлифовальных станков искажает форму обрабатываемой заготовки в поперечном сечении.
Биениеосиконуса отверстия шпинделя сверлильного станка по отношению к оси вращения шпинделя вызывает разбивку отверстия, т. е. увеличение его диаметра.
Износстанков приводит к увеличению систематической погрешности обрабатываемых заготовок.
Деформациистанковпри их неправильном монтаже и также под действием сил при оседании фундаментов вызывает дополнительные систематические погрешности обработки заготовок.
Для уменьшения влияния геометрических неточностей станков на качество обработки необходимо:
— выбирать станки соответствующей точности;
— обрабатывать установочные поверхности приспособлений на месте их установки (если необходимо);
— в процессе эксплуатации станка вести регулировку, выборочную подгонку, необходимый ремонт;
— использовать различные компенсирующие и корригирующие устройства, (например, копировальные линейки на координатно-расточных станках), в том числе системы ЧПУ;
— применять подшипники высоких классов точности, вести их доводку; использовать подшипники на гидростатических, пневматических и магнитных подвесах;
— обеспечивать выборку зазоров в соединениях деталей и частей станка (например, натяг в соединении винт-гайка).
Геометрические неточности режущего инструмента приводят к погрешностям обработки в основном при использовании мерных и фасонных инструментов — разверток, зенкеров, сверл, канавочных резцов, пальцевых и червячных фрез, фасонных резцов, фрез, долбяков, шлифовальных кругов, протяжек и т. д.
Отклонение размеров таких инструментов непосредственно переносится на заготовку. Однако при этом часто возникают дополнительные погрешности размеров и формы, вызываемые условиями обработки. Так, при работе мерными инструментами без охлаждения на режимах резания, способствующих нагреву инструмента и наростообразованию, часто появляется положительная разбивка, увеличивающая размеры отверстий, пазов, достигающая нескольких сотых долей миллиметра. Так, при точении стальной заготовки канавочным резцом из твердого сплава Т15К6 шириной 5 мм без СОЖ за счет разбивки ширина паза увеличивается на 0,01...0,03 мм.
Наименьшая разбивка имеет место при обработке хорошо заточенным и доведенным инструментом.
Разбивка увеличивается по мере притупления инструмента. Например, при работе новыми развертками величина разбивки составляет 5... 10 мкм, при работе приработанными развертками 10...30 мкм.
Применение охлаждающих жидкостей снижает разбивку в несколько раз.
При небольших скоростях резания (порядка 6... 10 м/мин), наличии обильного охлаждения, недостаточной жесткости заготовок (особенно типа втулок при протягивании, развертывании, дорновании) возможна отрицательная разбивка за счет упругих деформаций инструмента и заготовки.
На точность отверстий и пазов при обработке сверлами, зенкерами, пальцевыми фрезами влияет равномерность заточки режущих зубьев, биение инструментов, обратная конусность, неточность установки инструмента.
Допуски на изготовление мерных инструментов рассчитываются с учетом допусков на размеры детали, допустимого износа инструмента и возможной разбивки при обработке. Например, максимальный размер развертки при конструировании берется с учетом максимальной разбивки.
С целью уменьшения влияния погрешностей режущего инструмента на точность обработки необходимо:
— выбирать инструмент соответствующей точности;
— выбирать наиболее рациональные режимы резания;
— применять СОЖ;
— правильно устанавливать инструмент;
— использовать кондукторные и направляющие втулки.
- Технологические процессы и производства (теоретический курс) введение
- Технологическая подготовка производства (тпп)
- Общие положения
- 1.1.1. Порядок проведения технологической подготовки производства
- Содержание работ типовой схемы организации тпп при технологическом обеспечении
- Технологическая подготовка производства при проектировании изделия
- 1.1.2. Типы производства, формы организации и виды технологических процессов Типы производства
- Формы организации технологических процессов
- Виды технологических процессов
- 1.2. Структура технологического процесса и его основные характеристики
- Маршрут изготовления вала
- Характеристики технологического процесса
- 1.3. Основные принципы технологического проектирования
- 1.4. Технологические процессы сборки
- 2. Точность механической обработки
- 2.1. Точность и ее определяющие факторы
- 2.2. Статистические методы исследования точности механической обработки
- 2.2.1. Метод кривых распределения погрешностей
- 2.2.2. Графоаналитический метод (метод точечных диаграмм)
- 2.3. Расчетно-статистический метод исследования точности
- 2.3.1. Погрешности установки. Стандарты по базированию и установочным элементам
- Основные рекомендации о порядке выбора баз и решаемые при этом задачи
- Условные обозначения опор
- Погрешность положения заготовки εпр, вызываемая неточностью приспособления
- 2.3.2. Упругие деформации технологической системы
- 2.3.3. Износ режущего инструмента
- Начальный uн и относительный u0, износ режущих инструментов при чистовом точении и растачивании
- 2.3.4. Тепловые деформации технологической системы
- Зависимость удлинения резца от различных факторов
- Тепловые деформации станков
- Тепловые деформации изготавливаемой детали
- 2.3.5. Геометрические неточности станков и режущего инструмента
- Классификация станков по точности
- 2.3.6. Деформации заготовок, вызываемые внутренними напряжениями
- 2.3.7. Размерная наладка станков
- Наладка методом пробных стружек и промеров
- Размерная наладка по пробным деталям
- Рекомендации по размерной наладке методом пробных деталей
- Размерная наладка по калибрам наладчика
- Статическая наладка
- 2.3.8. Колебания при механической обработке
- Методы борьбы с колебаниями
- 2.3.10. Управление точностью механической обработки
- 3. Качество поверхностного слоя деталей
- 3.1. Критерии качества поверхностного слоя
- 3.2. Влияние технологических факторов на величину шероховатости
- 4. Определения припусков для механической обработки
- Расчетная длина заготовки при определении
- 5. Проектирование технологических процессов механической обработки
- 5.1. Типизация технологических процессов
- 5.2. Групповой метод обработки
- 5.2.1. Группирование деталей
- 5.2.2. Комплексная деталь
- 5.3. Модульная технология
- 5.4. Последовательность и правила проектирования технологических процессов изготовления деталей
- 5.4.1. Анализ исходных данных для разработки технологического процесса
- Соотношения между допусками размера, формы и параметрами шероховатости цилиндрических поверхностей
- Анализ технологичности изделий
- Требования к технологичности формы детали
- Примеры технологичных и нетехнологичных конструкций
- Выбор материала заготовки
- Технологические свойства сталей
- Коэффициенты обрабатываемости резанием различных материалов
- Значения критического диаметра Dk прокаливаемости
- Структура и свойства сердцевины детали
- Механические свойства стали 45хн после то
- Наличие удобных и надежных баз
- 5.4.2. Определение типа производства
- Годовая программа выпуска деталей по типам производств
- Организационно-технические характеристики типов производства
- 5.4.3. Определение класса детали и выбор в качестве аналога действующего типового или группового технологического процесса
- Пример декодирования и укрупненного анализа
- 5.4.4. Выбор исходной заготовки и методов ее изготовления
- Характеристика основных методов получения заготовок литьем
- Характеристика основных методов получения заготовок обработкой давлением
- 5.4.5. Выбор технологических баз
- 5.4.6. План обработки отдельных поверхностей
- Основные методы и виды обработки наружных цилиндрических поверхностей
- 5.4.7. Проектирование технологического маршрута обработки заготовки
- Этапы технологического процесса
- Этапы обработки
- 5.4.9. Нормирование технологических операций
- 6. Типовые технологические
- 6.1. Технология изготовления валов
- 6.1.1. Характеристика валов
- Технологические задачи
- Форма и размеры центровых отверстий
- 6.1.4. Методы обработки наружных цилиндрических поверхностей
- 6.1.4.1. Методы предварительной обработки наружных цилиндрических поверхностей
- Обработка на токарно-карусельных станках
- Обработка на токарно-револьверных станках
- 6.1.4.2. Методы чистовой обработки наружных цилиндрических поверхностей
- Шлифование
- 6.1.4.3. Методы повышения качества поверхностного слоя деталей
- 6.1.5. Обработка на валах элементов типовых сопряжений
- 6.1.5.1. Обработка на валах шпоночных пазов
- 6.1.5.2. Обработка на валах шлицев
- 6.1.5.3. Обработка на валах резьбовых поверхностей
- 6.1.6. Типовые маршруты изготовления валов
- 6.1.6.1. Примеры типовых маршрутов изготовления ступенчатых шлицевых валов
- 6.3. Технология изготовления корпусных деталей
- 6.3.1. Характеристика корпусных деталей
- 6.3.2. Материал и заготовки для корпусных деталей
- 1.3.3. Основные схемы базирования
- 6.3.4. Методы обработки плоских поверхностей
- 6.3.4.1. Обработка плоских поверхностей лезвийным инструментом
- 6.3.4.2. Обработка плоских поверхностей абразивным инструментом
- 6.3.5.1. Пример типового маршрута изготовления кронштейна
- 6.4. Технология изготовления зубчатых колес
- 6.4.1. Характеристика зубчатых колес
- 6.4.2. Материалы и заготовки зубчатых колес
- 6.4.3. Основные схемы базирования
- 6.4.4.1. Нарезание зубчатых колес методом копирования
- 6.4.4.2. Нарезание зубчатых колес методом обкатки
- 6.4.4.3. Накатывание зубчатых колес
- 6.4.4.4. Обработка торцовых поверхностей зубьев зубчатых колес
- 6.4.4.5. Методы отделочной обработки зубьев зубчатых колес
- 6.4.5. Типовые маршруты изготовления зубчатых колес
- 6.4.5.1. Пример типового маршрута изготовления зубчатого колеса
- 7. Автоматизация технологической подготовки производства
- 8. Оформление технологической документации
- 8.1. Маршрутная карта
- Сведения, вносимые в отдельные графы и строки маршрутной карты
- 8.2. Операционная карта
- 8.3. Карта эскизов
- 8.4. Документы технического контроля
- Информация, вносимая в карту технического контроля