Конструктивное исполнение насосов
Центробежный насос (рис. 12) простейшей конструкции состоит из следующих основных деталей: корпуса 6, крышки 4, рабочего колеса 5; уплотнения 3, подшипникового кронштейна 2, вала 1. На рис. 12 показан насос с направляющим аппаратом 7, оснащенный уплотняющими кольцами 8 плавающего типа. В этом насосе жидкая среда поступает в центробежное рабочее колесо через осевой подвод и выходит из него через спиральный отвод в корпусе. Сальниковое уплотнение предотвращает вытекание жидкости из корпуса наружу и поступление атмосферного воздуха при вакууме в полости корпуса. Возникающее осевое усилие воспринимается радиально-упорными подшипниками.
Рабочее колесо лопастных насосов состоит из •втулки и лопастей, соединенных с ней непосредственно или при помощи одного, или двух дисков. В зависимости от числа дисков эти колеса изготавливают открытыми (без дисков), полуоткрытыми (один диск) и закрытыми (два диска) с односторонним (рис. 13, а, в, а, е) или двусторонним входом (рис. 13,6, г).
Лопасти могут быть отогнуты назад (передача потоку жидкости потенциальной энергии — статический напор), радиальными или отогнуты вперед (передача потоку проходящей жидкости наибольшего количества энергии с преобладанием скоростной).
У насосов, предназначенных для перекачивания суспензий (песка, шлама, грунта и т.д.), каналы в рабочих колесах значительно расширены, а число лопастей уменьшено (до двух и даже до одной).
Форма лопастей вихревых насосов (рис. 14) прямоугольная, трапециевидная или серповидная (наиболее распространенная). Форма лопастей тихоходных закрытовихревых насосов — прямоугольная, открытовихревых — серпообразная. Форма сечения каналов у тихоходных насосов — круглая, у быстроходных насосов — квадратная или со скругленными концами.
Подвод — канал для направления жидкой среды к рабочему колесу, обеспечивающий осесимметричный ее поток с равномерным распределением скоростей с минимальными гидравлическими потерями.
Конструктивно подводы выполняют в виде: конического прямого патрубка (конфузора), применяемого в консольных насосах; коленообразного входного патрубка;
со спиральной формой канала (наиболее распространенная конструкция).
Подвод потока жидкой среды к рабочим колесам многоступенчатых насосов с лопаточными отводами осуществляется с помощью переводных каналов.
Рис. 14. Форма сечений проточной части (а—е) и лопаток (ж—к) вихревых насосов
Отвод—устройство для направления жидкой среды из рабочего колеса в отводящий трубопровод насоса или в рабочее колесо следующей ступени, предусмотренное для снижения скорости потока с наименьшими гидравлическими потерями и обеспечения его осе-симметричности, чтобы поток стал установившимся.
Конструктивно изготавливают спиральные, кольцевые и двухзавитковые отводы. Спиральный отвод состоит из канала переменной ширины и диффузора.
Кольцевой отвод представляет собой цилиндрический канал постоянной ширины.
Двухзавитковый отвод применяют для уменьшения поперечной гидравлической силы, возникающей вследствие нарушения осевой симметрии потока.
Направляющий аппарат (лопаточный отвод), применяемый в многоступенчатых насосах, состоит из нескольких каналов со спиральными и диффузорными участками.
Уравновешивание осевого усилия. Во время эксплуатации насоса на рабочее колесо действует осевая сила — результат воздействия потока жидкости на внутреннюю и наружную поверхности этого колеса.
Рис. 15 Схема уравновешивания осевого усилия
Осевая сила может быть значительной и в аварийной ситуации 5ызывать смещение рабочего колеса, нагрев подшипников, а при смещении ротора — соприкосновение колеса с неподвижными частями корпуса, в результате чего происходят истирание стенок рабочего колеса и поломка насоса.
Для уравновешивания осевой силы в одноступенчатых насосах применяют: рабочие колеса с двусторонним входом; разгрузочную камеру, сообщающуюся с областью всасывания с помощью трубки или через отверстия в заднем диске (рис. 15, а); недостаток камеры — снижение к. п. д. насоса на 4—6%; радиальные ребра (рис. 15,6), уменьшающие воздействие осевой силы за счет снижения давления жидкости на заднем диске; упорные подшипники.
Для уравновешивания осевого усилия в многоступенчатых насосах используют: рабочие колеса при соответствующей системе подвода жидкости от колеса к колесу (рис. 15,5, е, ж); автоматическую гидравлическую пяту (рис. 15, е), установленную за последней ступенью насоса.
Гидравлическая пята состоит из камеры низкого давления 1, промежуточной камеры 2, отжимного устройства (механической пяты 3 и пружины 4) и разгрузочного диска 5. Кольцевой зазор 6 предусмотрен для снижения давления в промежуточной камере, торцовый зазор а — для создания осевого усилия в направлении, противоположном осевой силе, действующей на рабочие колеса, и для дальнейшего снижения давления жидкости перед ее входом в камеру низкого давления.
Уплотнения. Применяют для уменьшения перетоков жидкостей вследствие разности давлений в соседних полостях, предупреждения утечек жидкости и засасывания атмосферного воздуха, в область между вращающимися и неподвижными деталями насоса, применяются щелевые и концевые уплотнения различной конструкции.
Щелевые уплотнения — уплотнительные кольца, предназначенные для уменьшения перетоков жидкости в проточной части насоса, образуют между корпусом и рабочим колесом щель прямой, ступенчатой или лабиринтной формы (рис. 16, а—з).
В местах выхода вала из корпуса насоса устанавливают концевые уплотнения — сальниковые или торцовые.
Сальниковое уплотнение (рис. 17, а) состоит из эластичной набивки 1 и нажимной втулки 2. При давлении всасывания ро ниже атмосферного в сальнике устанавливают кольцо 3 (рис. 17,6), к которому из отводящего трубопровода насоса подводится поток жидкости. Этим исключается подсасывание воздуха из атмосферы.
Иногда предусматривают разгрузку сальника (рис. 17, в). Жидкая среда в этом случае через цилиндрический дросселирующий зазор длиной l между валом и втулкой поступает в полость с пониженным давлением.
При перекачивании горячих жидкостей и сжиженных газов сальник сдается водой, омывающей снаружи его корпус (рис. 17, г) рубашку вала (рис. 17, д.)
Рис. 17 Схемы сальниковых уплотнений вала
Торцовые уплотнения по сравнению с сальниковыми, менее чувствительные к несносности вала и корпуса, приспособлены к работе в более широком диапазоне температур и давлений. Трение в них уменьшено, а утечки сокращены.
По типу компенсации осевого смещения вала торцовые уплотнения подразделены на две группы: с вращающимся и с невращающимися аксиально-подвижным элементом.
По направлению подвода жидкости различают торцовые уплотнения с внешним или внутренним подводом.
Удельное давление в паре трения не всегда соответствует давлению уплотняемой жидкости. Это зависит от конструкции уплотнения, которая характеризуется коэффициентом гидравлической разгрузке.
Гидравлическая разгрузка достигается установкой торцового уплотнения на ступенчатом валу или на специальной втулке (гильзе), с помощью которых обеспечивается требуемая разность диаметров подвижной и неподвижной втулок.
Неразгруженные уплотнения применяют при легких рабочих условиях (при низких давлениях уплотняемой жидкости), а разгруженные— при давлениях более 0,7 МПа (для снижения удельного давления на контактных поверхностях рабочих втулок).
Для центробежных нефтяных насосов используются торцовые уплотнения следующих типов:
Т — торцовое одинарное;
ТП — торцовое одинарное для повышенных температур;
ТВ — торцовое одинарное для высоких температур;
ТД — торцовое двойное;
ТДВ — торцовое двойное для высоких температур.
Область применения торцовых уплотнений указана в табл. 4.
Уплотнения типа Т – одинарное гидравлически разгруженное с вращающимся узлом аксиально подвижной втулки 4 (рис.18), установленной в гильзе 8 на закладном кольце 3 круглого сечения. Крутящий момент втулке передается двумя штифтами 2, запрессованными в кольцо 1.
Неподвижная втулка 5 установлена в корпусе 15, прикрепленном к обойме 16 на уплотнительном кольце 6 круглого сечения и удерживается по проворачиванию штифтом 13, запрессованным в лабиринтную втулку 11, зафиксированной в осевом направлении с помощью скобы 14. Гильза 8 крепится к валу насоса клемнным кольцом 7, огражденным перегородкой 12 и стягиваемым болтом 10 и гайкой. Зазор между гильзой и валом насоса герметизируется резиновым кольцом 9. Благодаря возникающей силе трения положение клеммного кольца 7 надежно фиксируется на валу, в результате чего оно способно передать крутящий момент от вала к гильзе 8, а также воспринять осевую силу, прижимающую гильзу к кольцу 7.
По отверстию А в полость между неподвижной и лабиринтной втулками поступает охлаждающая жидкость, стекающая через отверстие в корпусе уплотнения. Такая жидкостная завеса способствует отводу тепла от пары трения, а также препятствует испарению жидкости, отводимой на дренаж.
По отверстию В, соединенному трубкой с напорной спиралью насоса, в камеру уплотнения подводится в небольших количествах перекачиваемая жидкость, отводящая тепло от пары трения, а также удаляющая продукты износа рабочих втулок.
Уплотнение типа ТП по конструкции аналогично уплотнению типа Т. Различие заключается лишь в том, что для отвода фрикционного тепла с трущейся пары предусмотрена принудительная циркуляция перекачиваемой жидкости через камеру уплотнения, осуществляемая с помощью встроенного импеллера по системе камера уплотнения — охлаждаемый бачок — камера уплотнения.
Уплотнение ТВ — торцовое одинарное с теплообменным устройством. В отличие от уплотнения типа ТП оно имеет специальный холодильник, устанавливаемый в сальниковой камере насоса. Холодильник предусмотрен для охлаждения вала и жидкости, находящейся в зазоре между валом и холодильником. Характеристика уплотнений приведена в табл. 5.
Таблица 5. Характеристика уплотнений
Уплотнение двойное типа ТД (рис. 19) по конструкции аналогично уплотнению типа Т. Различие заключается в том, что предусмотрены вторая (внутренняя) пара трения и стопорное кольцо 10.
В полость, образуемую двумя парами трения и корпусом 5 с переходником 7, поступает уплотнительная (затворная) жидкость с давлением на 0,05—0,15 МПа, превосходящим давление перекачиваемой (уплотняемой) жидкости. Благодаря этому предотвращается утечка перекачиваемой жидкости или выделение ее паров в атмосферу.
Рис. 19 Разрез торцевого уплотнения типа ТД
В системе подачи уплотнительной жидкости должна быть предусмотрена ее циркуляция для обеспечения интенсивного отвода фрикционного тепла от пары трения.
Внутренняя пара трения воспринимает перепад давления, равный разности между давлением уплотнительной и уплотняемой жидкости. Внешняя пара трения воспринимает больший перепад давления, равный разности между давлением уплотнительной жидкости в камере уплотнения и атмосферным давлением. В связи с этим внешняя пара рабочих втулок выполнена гидравлически разгруженной, а внутренняя — неразгруженной. Коэффициент разгрузки составляет примерно 0,7. На гильзе 4 предусмотрены вращающиеся втулки 2, установленные на закладных резиновых уплотнительных кольцах 8 круглого сечения. Крутящий момент от гильзы к каждой втулке передается штифтами.
Пружины 6, опирающиеся опорными поверхностями во вращающиеся втулки и опорное кольцо 1, напрессованное на гильзу, обеспечивают предварительный контакт рабочих поверхностей в обеих парах трения. Неподвижные рабочие втулки 3, 11 установлены в корпусе уплотнения 5 и переходнике 7. Втулка 11 удерживается от проворачивания штифтом 12. Стопорное кольцо 10 предназначено для ограничения перемещения неподвижной втулки при внезапном падении давления уплотнительной жидкости в камере уплотнения.
Уплотнения типа ТД рассчитаны на циркуляционную систему подачи уплотнительной жидкости в камеру уплотнения. Уплотнительная жидкость циркулирует через отверстия в корпусе под давлением на 0,05—0,15 МПа выше, чем давление уплотняемой жидкости.
Уплотнение торцовое двойное с затворной жидкостью и теплообменным устройством типа ТДВ по конструкции отличается от уплотнения типа ТД тем, что жидкость, находящаяся в контакте с узлом уплотнения, охлаждается до температуры 80°С с помощью специального холодильника, устанавливаемого в сальниковой камере насоса.
- Российская федерация
- Автономная некоммерческая организация
- «Учебно-методический центр»
- «Статус»
- Учебно – методическое пособие
- Транспорт нефти и нефтепродуктов
- 1.1. Общие сведения о транспорте и нефтепродуктах
- 1.2. Железнодорожный транспорт. Общая характеристика
- 1.3. Водный транспорт
- 1.4. Автомобильный транспорт
- 1.5. Трубопроводный транспорт
- 2. Гидравлические расчеты магистральных нефтепроводов. Основные факторы, влияющие на перекачку жидкостей
- 2.1. Трасса трубопровода и ее профиль
- 2.2. Гидравлический уклон
- 2.3. Гидравлический расчет трубопроводов
- 2.4. Характеристика трубопровода
- 2.5. Совмещенная характеристика насосных станций и трубопровода
- 2.6. Расчет сложных трубопроводов
- 3. Сортамент труб и элементы трубопроводных коммуникаций
- 3.1. Рукава
- 3.2. Соединения труб
- 3.3. Прокладки для фланцевых соединений
- 4. Арматура трубопроводов
- 4.1. Регулирующая арматура
- 4.2. Предохранительная арматура
- 4.3. Приводы для управления трубопроводной арматурой
- 5. Прокладка трубопроводов
- 5.1. Компенсация тепловых удлинений трубопроводов
- 5.2. Компенсаторы
- 6. Опоры трубопроводов
- 6.1. Расчет трубопроводов на прочность
- 6.2. Защита трубопроводов от коррозии
- 7. Резервуары для хранения нефти и нефтепродуктов
- Стальные резервуары
- Неметаллические резервуары
- 8. Оборудование резервуаров
- Перепускным устройством и механизмом управления хлопушкой
- Гидравлический клапан типа
- 9. Расчет вертикальных цилиндрических резервуаров
- 9.1. Резервуары с постоянной толщиной стенки
- 9.2. Резервуары с переменной толщиной стенки
- 10. Подогрев нефти и нефтепродуктов
- 10.1. Назначение, способы подогрева и теплоносители
- 10.2. Конструкции и расчет подогревателей
- 11. Потери нефти и нефтепродуктов. Классификация потерь
- 12. Основные способы перекачки высоковязких и высокозастывающих нефтей и нефтепродуктов
- 12.1. Перекачка с разбавителями
- 12.2. Гидротранспорт вязкой нефти
- 12.3. Перекачка термообработанной нефти
- 12.4. Перекачка нефти с присадками
- 12.5. Перекачка предварительно подогретой нефти
- 13. Транспорт газа
- 13.1. Классификация и состав природных и искусственных газов
- Физико-химические свойства углеводородных газов
- 13.2. Основные законы газового состояния
- 13.3. Общие сведения о транспорте газа
- 13.4. Компрессорные станции газопроводов
- 13.5. Удаление примесей из газа
- Очистка газа от газообразных примесей
- Очистка газа от сероводорода и углекислоты
- 13.6. Одоризация газа
- Промысловые резервуары
- Оборудование резервуаров
- Борьба с потерями нефти
- Потери при закачке промысловых сточных вод
- Приборы для измерения давления, температуры, расхода, уровня
- Жидкостные манометры
- Деформационные манометры
- Измерение температуры
- Измерение уровня жидкости
- Измерение расхода и количества жидкостей
- Автоматические средства измерения содержания в нефти воды, солей, плотности
- Учет нефти
- Учет нефти в резервуарах
- Учет нефти по счетчикам
- Обслуживание резервуарных парков
- Охрана труда и противопожарные мероприятия. Охрана окружающей среды Инструктаж и обучение безопасным методам труда
- Токсичность, вредность нефти и применяющихся в добыче нефти веществ
- Производственное освещение
- Классификация насосов
- Свойства и классификация перекачиваемых жидкостей
- Динамические насосы основные зависимости
- Характеристики насосов и способы их регулирования
- Конструктивное исполнение насосов
- Нефтяные насосы
- Пуск и остановка насосного агрегата
- Характерные неисправности в работе насосных агрегатов
- 14. Вопросы для самопроверки
- Литература