8.2. Снижение выбросов двигателей внутреннего сгорания
Повышение экологических показателей автомобиля возможно за счет проведения комплекса мероприятий по совершенствованию его конструкции и режима эксплуатации. К улучшению экологических показателей автомобиля приводят: повышение его экономичности; замена бензиновых ДВС на дизельные; перевод ДВС на использование альтернативных топлив (сжатый или сжиженный газ, этанол, метанол, водород и др.); применение нейтрализаторов отработавших газов ДВС; совершенствование режима работы ДВС и технического обслуживания автомобиля.
Известны и применяются ряд методов снижения токсичности выхлопных газов. Среди них работа автомобиля в условиях, когда двигатель выделяет наименьшее количество токсичных веществ (уменьшение торможения, равномерное движение с определенной скоростью и т. д.); применение специальных присадок к топливу, увеличивающих полноту его сгорания и уменьшающих выброс СО (спирты, другие соединения); пламенное дожигание некоторых вредных компонентов.
В карбюраторных двигателях соотношения между воздухом и топливом влияет на содержание углеводородов и оксида углерода в выхлопе. Так, например, выбросы увеличиваются при увеличении обогащения смеси. Содержание СО увеличивается из-за неполного сгорания, вызванного недостатком кислорода в смеси. Увеличение содержания углеводородов проистекает в первую очередь из-за увеличения адсорбции топлива и усиления механизма неполного сгорания топлива. Бедные смеси создают более низкие концентрации СnНm и СО в выбросе в результате их более полного сгорания.
В дизельных двигателях мощность изменяется при изменении количества впрыскиваемого топлива. В результате изменяется распределение струи топлива, количество топлива, ударяющегося о стенку, давление в цилиндре, температура, а также продолжительность впрыскивания.
Специалисты считают, что для заметного снижения вредных выбросов необходимо сократить потребление бензина с 8 литров (на 100 км пробега – до 2…3 л. Это требует совершенствование устройства двигателя и качества топлива; перехода на неэтилизированный бензин; применения каталитического дожига для уменьшения выброса СО; внедрения электронной системы управления процессов горения топлива; и другие меры, в частности применения глушителей шума в системе выхлопа.
Повышение топливной экономичности автомобиля достигается главным образом за счет совершенствования процесса сгорания в ДВС: послойное сжигание топлива; форкамерно-факельное сжигание; применение подогрева и испарения топлива во впускном тракте; использование электронного зажигания. Дополнительными резервами повышения экономичности автомобиля являются:
— снижение массы автомобиля за счет усовершенствования его конструкции и применения неметаллических и высокопрочных материалов;
— улучшение аэродинамических показателей кузова (последние модели легковых автомобилей обладают, как правило, на 30…40 % меньшим коэффициентом лобового сопротивления);
— снижения сопротивления воздушных фильтров и глушителей, отключения вспомогательных агрегатов, например вентилятора и т. п.;
— снижения массы перевозимого топлива (неполное заполнение баков) и массы инструментов.
Современные модели легковых автомобилей существенно отличаются по топливной экономичности от предшествующих моделей.
Перспективные марки легковых автомобилей будут обладать расходом бензина 3,5 л/100 км и менее. Повышение экономичности автобусов и грузовых автомобилей достигается прежде всего применением дизельных ДВС. Они обладают экологическими преимуществами по сравнению с бензиновыми ДВС, поскольку имеют меньший на 25…30 % удельный расход топлива; кроме того, состав отработавших газов у дизельного ДВС менее токсичен (см. табл. 8.1).
Экологическими преимуществами по сравнению с бензиновыми ДВС обладают двигатели, работающие на альтернативных топливах. Общее представление о снижении токсичности ДВС при переходе на альтернативное топливо можно получить из данных, приведенных в табл. 8.2.
Многие ученые видят частичные решения экологической проблемы в переводе автомобилей на газообразное топливо. Так, содержание окиси углеродов в выхлопах газомобилей меньше на 25…40 %; окиси азота на 25…30 %; сажи на 40…50 %. При использовании в автомобильных двигателях сжиженного или сжатого газа выхлопные газы почти не содержат оксида углерода. Решением проблемы явилось бы широкое применение электромобиля. Выпускаемые электромобили имеют ограниченный радиус действия из-за ограниченной емкости и большой массы батарей. Сейчас ведутся широкие исследования в этой области. Некоторые положительные результаты уже достигнуты. Снижение токсичности выбросов может быть достигнуто уменьшением содержания соединений свинца в бензине без ухудшения его энергетических качеств.
Перевод на газовое топливо не предусматривает значительных изменений в конструкции ДВС, однако сдерживается отсутствием станций заправки и необходимого количества автомобилей, переоборудованных для работы на газе. Кроме того, автомобиль, переоборудованный для работы на газовом топливе, теряет грузоподъемность из-за наличия баллонов и запас хода приблизительно в 2 раза (200 км против 400…500 км у бензинового автомобиля). Эти недостатки частично устранимы при переводе автомобиля на сжиженный природный газ.
Таблица 8.2
Топливо | Выбросы, % | |
CO | NOx | |
Бензин | 100 | 100 |
Природный газ | 60 | 74 |
Метанол | 50 | 55 |
Применение метанола и этанола требует изменений конструкции в ДВС, так как спирты более химически активны к резинам, полимерам, медным сплавам. В конструкцию ДВС необходимо вводить дополнительный подогреватель для запуска двигателя в холодный период года (при t< -25 °С); необходима перерегулировка карбюратора, так как изменяется стехиометрическое отношение расхода воздуха к расходу топлива. У бензиновых ДВС оно равно 14,7; у двигателей на метаноле — 6,45, а на этаноле — 9. За рубежом (Бразилия) применяют смеси бензина и этанола в пропорции 12:10, что позволяет использовать бензиновые ДВС с незначительными изменениями их конструкции, несколько повышая при этом экологические показатели двигателя.
Несмотря на то что выбросы токсичных веществ (СnНm и СО) из картера и топливной системы двигателя по крайней мере на порядок ниже выбросов выхлопных газов, в настоящее время разрабатываются методы сжигания картерных газов ДВС. Известна замкнутая схема нейтрализации картерных газов с подачей их во впускной трубопровод двигателя с последующим дожиганием. Замкнутая система вентиляции картера с возвращением картерных газов до карбюратора уменьшает выделение в атмосферу углеводородов на 10…30 %, оксидов азота на 5…25 %, но при этом увеличивается выброс оксида углерода на 10…35 %. При возвращении картерных газов после карбюратора снижается выброс CnHm на 10…40 %, СО на 10…25 %, но возрастает выброс NOx на 10…40 %.
Для предотвращения выбросов паров бензина из топливной системы, основная часть которых поступает в атмосферу, когда двигатель не работает, на автомобилях устанавливают систему обезвреживания испарений топлива из карбюратора и топливного бака, состоящую из трех основных узлов (рис. 8.1): герметичного топливного бака 1 со специальной емкостью 2 для компенсации теплового расширения топлива; крышки 3 топливно-за-правочной горловины бака с двусторонним предохранительным клапаном для предотвращения чрезмерного давления или разрежения в баке; адсорбера 4 для поглощения паров топлива при выключенном двигателе с системой возврата паров во впускной тракт двигателя во время его работы. В качестве адсорбента используют активированный уголь.
Рис. 8.1. Схема улавливания паров топлива бензинового ДВС
Соблюдение регламента технического обслуживания и контроль состава ОГ ДВС позволяет значительно сократить токсичные выбросы в атмосферу. Известно, что при 160 тыс. км пробега и при отсутствии контроля выбросы СО возрастают в 3,3 раза, а СпНт — в 2,5 раза.
Повышение экологических показателей газотурбинной двигательной установки (ГТДУ) на самолетах достигается совершенствованием процесса сгорания топлива, применением альтернативного топлива (сжиженный газ, водород и др.), рациональной организацией движения в аэропортах.
Увеличение времени пребывания продуктов сгорания в камере сгорания ГТДУ сопровождается увеличением полноты сгорания (уменьшение содержания СО и CnHm в продуктах сгорания) и содержания в них оксидов азота. Поэтому, изменяя время пребывания газа в камере сгорания, можно достичь лишь минимальной токсичности продуктов сгорания, а не устранить ее полностью.
Более эффективным средством снижения токсичности ГТДУ является применение способов подачи топлива, обеспечивающих более равномерное смещение топлива и воздуха. К ним относятся устройства с предварительным испарением топлива, форсунки с аэрацией топлива и др. Испытания на модельных камерах свидетельствуют о том, что такими способами можно снизить содержание в продуктах сгорания СnНm более чем на порядок, СО — в несколько раз, обеспечить бездымный выхлоп и уменьшить содержание NOx.
Существенное снижение содержания NOx в продуктах сгорания ГТДУ достигается при стадийном процессе сгорания топлива в двухзонных камерах сгорания. В таких камерах основная часть топлива на режимах большой тяги сжигается в виде предварительно подготовленной бедной смеси. Меньшая часть топлива (~25 %) сжигается в виде богатой смеси, где и образуются в основном оксиды азота. Опыты показывают, что при таком сгорании можно снизить содержание NOx в 2 раза.
Решение экологических проблем, связанных с применением ракетной техники, основано на использовании экологически безопасного топлива и прежде всего кислорода и водорода.
- А.Г. Ветошкин процессы и аппараты газоочистки
- 8.2. Снижение выбросов двигателей внутреннего сгорания.
- 1. Источники загрязнения атмосферы вредными газовыми выбросами
- Фоновые концентрации газов в естественных условиях
- 2. Классификация процессов и аппаратов очистки газовых выбросов
- 3. Абсорбционная очистка газов
- Абсорбенты, применяемые для очистки отходящих газов
- 3.1. Технология абсорбционной очистки промышленных выбросов
- 3.2. Конструкции и принцип действия абсорберов
- 3.1.1. Насадочные абсорберы
- Характеристика насадок
- 3.1.2. Тарельчатые абсорберы
- 3.1.3. Распыливающие абсорберы
- 3.3. Методы расчета абсорберов
- 3.2.1. Равновесие, движущая сила и кинетика абсорбции
- 3.2.2. Материальный баланс и уравнение рабочей линии абсорбции
- 3.2.3. Расчет процессов массопередачи в абсорберах
- Из последних уравнений следует, что
- Аналогично можно получить
- Безразмерные величины
- Коэффициент массоотдачи в жидкой фазе определяют по уравнению
- 3.2.4. Расчет хемосорбционных аппаратов
- Уравнение рабочей линии имеет вид
- При быстрых необратимых реакциях второго порядка
- 3.2.5. Расчет основных размеров абсорберов.
- 3.2.6. Расчет насадочных абсорберов
- Высоту слоя насадки определяют по уравнению
- Гидравлическое сопротивление слоя сухой насадки
- Значения коэффициентов
- В соответствии с материальным балансом
- В нижней части колонны –
- В нижней части колонны –
- В нижней части колонны –
- Скорость захлебывания определим по уравнению
- 3.2.7. Расчет тарельчатых абсорберов
- 3.2.8. Расчет распыливающих абсорберов
- 3.4. Десорбция загрязнителей из абсорбентов
- 4. Адсорбционная очистка газов
- Характеристика и области применения активных углей
- 4.1. Технология адсорбционной очистки промышленных выбросов
- Очистка газов от оксидов азота
- Очистка газов от диоксидов серы
- Очистка от хлора и хлорида водорода
- Очистка газов от сероводорода
- 4.2. Устройство и принцип действия адсорберов
- 4.2.1. Адсорберы периодического действия
- 4.2.2. Адсорберы непрерывного действия
- 4.3. Принципы расчета адсорберов
- 4.3.1. Адсорбционное равновесие
- 4.3.2. Материальный баланс адсорбции
- 4.3.3. Кинетические характеристики адсорбции
- 4.3.4. Расчет адсорберов периодического действия
- Тогда высота адсорбата (адсорбционной зоны) в адсорбере составит
- Число единиц переноса определяется выражением:
- 4.3.5. Расчет адсорберов непрерывного действия
- 4.4. Десорбция адсорбированных продуктов
- 5. Конденсационная очистка газов и паров
- 5.1. Принцип конденсационной очистки
- 5.2. Типы и конструкции конденсаторов
- 5.3. Расчет конденсаторов
- Для стационарного процесса теплопередачи справедливо равенство
- 6. Термокаталитическая очистка газовых выбросов
- 7. Термическая обработка газовых выбросов
- 7.1. Установки термообезвреживания газовых выбросов
- 7.2. Принципы расчета установок термообезвреживания
- При значительных концентрациях горючих загрязнителей расход дымовых газов рассчитывают по выражению:
- 8. Очистка газовых выбросов автомобильного транспорта
- 8.1. Характеристика выбросов двигателей внутреннего сгорания
- Примерный состав выхлопных газов автомобилей
- 8.2. Снижение выбросов двигателей внутреннего сгорания
- 8.3. Нейтрализация выхлопов двигателей внутреннего сгорания
- 8.4. Улавливание аэрозолей, выбрасываемых дизельным двигателем
- 9. Оценка эффективности устройств для очистки газовых выбросов
- 10. Выбор вариантов газоочистки
- Приложение п.4
- Физико-химические свойства веществ