3.1.3. Распыливающие абсорберы
В распыливающих абсорберах контакт между фазами достигается распыливанием или разбрызгиванием жидкости в газовом потоке. Эти абсорберы подразделяют на следующие группы:
1) форсуночные распыливающие абсорберы, в которых жидкость распыляется на капли форсунками;
2) скоростные прямоточные распыливающие абсорберы, в которых распыление жидкости осуществляется за счет кинетической энергии газового потока;
3) механические распыливающие абсорберы, в которых жидкость распыляется вращающимися деталями.
Полые распыливающие абсорберы (рис. 3.15) представляют собой полые колонны. В этих абсорберах газ движется снизу вверх, а жидкость подается через расположенные в верхней части колонны 1 форсунки 2 с направлением факела распыла обычно сверху вниз. Эффективность таких абсорберов невысока, что обусловлено перемешиванием газа по высоте колонны и «плохим» заполнением ее сечения факелом распыленной жидкости. В результате объемный коэффициент массопередачи и число единиц переноса в этих аппаратах невелики. Поэтому распылительные форсунки в полых абсорберах часто устанавливают на нескольких уровнях.
Полые распыливающие абсорберы отличаются простотой устройства, низкой стоимостью, малым гидравлическим сопротивлением, их можно применять для обработки сильно загрязненных газов.
К недостаткам полых распыливающих абсорберов, помимо их низкой эффективности, относятся также низкие скорости газа (до 1 м/с) во избежание уноса, неудовлетворительная их работа при малых плотностях орошения, достаточно высокий расход энергии на распыление жидкости. Распыливающие полые абсорберы целесообразно применять для улавливания хорошо растворимых газов.
Рис. 3.15. Устройство полых распыливающих абсорберов:
а – вертикального с верхним распылом жидкости; б - вертиикального с распылом жидкости по высоте аппарата; в - горизонтального с перекрестным током; 1 – корпус; 2 – форсуночный коллектор орошающей жидкости; 4 - брызгот6ойник; 5 - газораспределитель.
Скоростные прямоточные распыливающие абсорберы отличаются тем, что в случае прямотока процесс можно проводить при высоких скоростях газа (до 20…30 м/с и выше) причем вся жидкость уносится с газом и отделяется от него в сепарационном пространстве 4. К этому типу аппаратов относится абсорбер Вентури (рис. 3.16), основной частью которого является труба Вентури. Жидкость поступает в конфузор 1, течет в виде пленки и в горловине 2 распыляется газовым потоком. Затем жидкость газовым потоком выносится в диффузор 3, в котором скорость газа снижается и его кинетическая энергия переходит в энергию давления с минимальными потерями. Отделение капель от газа происходит в сепараторе 4. ,
Рис. 3.16. Устройство бесфорсуночного абсорбера Вентури:
а - с эжекцией жидкости; б - с пленочным орошением; 1 - конфузоры;
2 - горловины; 3 - диффузоры; 4 - сепараторы; 5 - циркуляционная труба;
6 - гидравлический затвор.
Механические распыливающие абсорберы. В этих абсорберах разбрызгивание жидкости производится с помощью вращающихся устройств, т. е. с подводом внешней энергии для развития поверхности фазового контакта. На рис. 3.17 представлен такой абсорбер, в котором разбрызгивание жидкости осуществляется с помощью лопастей (рис. 3.17,а) или дисков (рис. 3.17,б), закрепленных на горизонтальных валах 1. Разбрызгивающие элементы 2 устанавливают так, что газ движется перпендикулярно или параллельно осям их валов.
Рис. 3.17. Механические распыливающие абсорберы:
а - с разбызгиванием жидкости валками лопастного типа; б - с разбрызгиванием жидкости дисками; 1 - валы; 2 - разбрызгиватели; 3 – перегородки.
По сравнению с абсорберами других типов механические абсорберы более компактны и эффективны, но они значительно сложнее по конструкции и требуют больших затрат энергии для проведения процесса. Поэтому механические распыливающие абсорберы целесообразно применять в тех случаях, когда распыление с помощью форсунок или газом, взаимодействующим с жидкостью, по каким- либо причинам не представляется возможным.
Большинство рассмотренных выше аппаратов используется и для проведения других процессов массопереноса, прежде всего для ректификации и жидкостной экстракции.
- А.Г. Ветошкин процессы и аппараты газоочистки
- 8.2. Снижение выбросов двигателей внутреннего сгорания.
- 1. Источники загрязнения атмосферы вредными газовыми выбросами
- Фоновые концентрации газов в естественных условиях
- 2. Классификация процессов и аппаратов очистки газовых выбросов
- 3. Абсорбционная очистка газов
- Абсорбенты, применяемые для очистки отходящих газов
- 3.1. Технология абсорбционной очистки промышленных выбросов
- 3.2. Конструкции и принцип действия абсорберов
- 3.1.1. Насадочные абсорберы
- Характеристика насадок
- 3.1.2. Тарельчатые абсорберы
- 3.1.3. Распыливающие абсорберы
- 3.3. Методы расчета абсорберов
- 3.2.1. Равновесие, движущая сила и кинетика абсорбции
- 3.2.2. Материальный баланс и уравнение рабочей линии абсорбции
- 3.2.3. Расчет процессов массопередачи в абсорберах
- Из последних уравнений следует, что
- Аналогично можно получить
- Безразмерные величины
- Коэффициент массоотдачи в жидкой фазе определяют по уравнению
- 3.2.4. Расчет хемосорбционных аппаратов
- Уравнение рабочей линии имеет вид
- При быстрых необратимых реакциях второго порядка
- 3.2.5. Расчет основных размеров абсорберов.
- 3.2.6. Расчет насадочных абсорберов
- Высоту слоя насадки определяют по уравнению
- Гидравлическое сопротивление слоя сухой насадки
- Значения коэффициентов
- В соответствии с материальным балансом
- В нижней части колонны –
- В нижней части колонны –
- В нижней части колонны –
- Скорость захлебывания определим по уравнению
- 3.2.7. Расчет тарельчатых абсорберов
- 3.2.8. Расчет распыливающих абсорберов
- 3.4. Десорбция загрязнителей из абсорбентов
- 4. Адсорбционная очистка газов
- Характеристика и области применения активных углей
- 4.1. Технология адсорбционной очистки промышленных выбросов
- Очистка газов от оксидов азота
- Очистка газов от диоксидов серы
- Очистка от хлора и хлорида водорода
- Очистка газов от сероводорода
- 4.2. Устройство и принцип действия адсорберов
- 4.2.1. Адсорберы периодического действия
- 4.2.2. Адсорберы непрерывного действия
- 4.3. Принципы расчета адсорберов
- 4.3.1. Адсорбционное равновесие
- 4.3.2. Материальный баланс адсорбции
- 4.3.3. Кинетические характеристики адсорбции
- 4.3.4. Расчет адсорберов периодического действия
- Тогда высота адсорбата (адсорбционной зоны) в адсорбере составит
- Число единиц переноса определяется выражением:
- 4.3.5. Расчет адсорберов непрерывного действия
- 4.4. Десорбция адсорбированных продуктов
- 5. Конденсационная очистка газов и паров
- 5.1. Принцип конденсационной очистки
- 5.2. Типы и конструкции конденсаторов
- 5.3. Расчет конденсаторов
- Для стационарного процесса теплопередачи справедливо равенство
- 6. Термокаталитическая очистка газовых выбросов
- 7. Термическая обработка газовых выбросов
- 7.1. Установки термообезвреживания газовых выбросов
- 7.2. Принципы расчета установок термообезвреживания
- При значительных концентрациях горючих загрязнителей расход дымовых газов рассчитывают по выражению:
- 8. Очистка газовых выбросов автомобильного транспорта
- 8.1. Характеристика выбросов двигателей внутреннего сгорания
- Примерный состав выхлопных газов автомобилей
- 8.2. Снижение выбросов двигателей внутреннего сгорания
- 8.3. Нейтрализация выхлопов двигателей внутреннего сгорания
- 8.4. Улавливание аэрозолей, выбрасываемых дизельным двигателем
- 9. Оценка эффективности устройств для очистки газовых выбросов
- 10. Выбор вариантов газоочистки
- Приложение п.4
- Физико-химические свойства веществ