§ 1. Устройства для диспергирования жидкости
В мокрых пылеуловителях жидкость распыляют с помощью форсунок, которые по принципу действия подразделяют на механические и пневматические. В свою очередь механические форсунки делят на центробежные и струйные (щелевые). В мокрых пылеуловителях чаще всего применяют центробежные форсунки, реже — струйные и пневматические.
Центробежные форсунки. Работа центробежной форсунки (рис. 10.1, а) основана на закручивании жидкости в вихревой камере за счет тангенциального подвода жидкости или в спиралеобразном канале с последующим выбросом через сужающееся сопло.
Рис. 10.1. Центробежная форсунка: а — схема; б — график характеристик
Вследствие вращающегося движения жидкости по выходе из сопла поток жидкости разлетается по прямолинейным лучам, образуя полый конус из-за прекращения ограничивающего действия стенок. В соответствии с теорией Г. Н. Абрамовича скорость истечения wи и расход жидкости Vж через форсунку находят по следующим формулам:
; (10.1)
, (10.2)
где do — диаметр выходного отверстия форсунки, м; рф — давление жидкости перед форсункой, Па; φ — коэффициент заполнения сопла.
Коэффициент расхода жидкости через сопло Кж определяют по формуле
. (10.3)
Геометрическую характеристику форсунки Аф находят из выражения
Аф = Rπdo/2nFвх, (10.4)
где Fвх = ndвх2/4 — площадь сечения входного канала, м2; п — число входных каналов; R и dвх — размеры, м, показанные на рис. 10.1, а.
Коэффициент заполнения сопла φ, угол раскрытия факела α и геометрическая характеристика форсунки Аф связаны между собой следующими зависимостями:
; (10.5)
. (10.6
Угол раскрытия факела а может изменяться в широких пределах (от 8 до 180°).
Параметры форсунки Кж,, φ, α могут быть найдены по графику (рис. 10.1, б). Расчет форсунки ведут в следующей последовательности: выбирают желаемый угол раскрытия факела а, по графику (см. рис. 10.1, б) находят величины Кж,, φ, Аф; по формулам вычисляют диаметр выходного отверстия форсунки dо, и скорость истечения; по формуле (10.4) рассчитывают эксцентриситет R, задаваясь Fвх и п (от 1 до 4). Внутренний диаметр камеры закручивания принимают равным D = 2R + dвх , высоту камеры закручивания Н = 1,2dвх, угол конусности на входе в сопло 90—120°.
Для определения среднего размера капель dк, получающихся при распыливании жидкостей центробежными форсунками, пользуются исключительно зависимостями, полученными в результате обработки экспериментальных данных методами теории подобия. Например, для центробежных форсунок с тангенциальным подводом воды предложена формула
dк/dо = 18,3/Re0,59, (10/7)
где do — диаметр выходного отверстия сопла, м; Re=wэdo/υж — число Рейнольдса, рассчитанное по эквивалентной скорости в сопле wэ = .
Экспериментально установлено, что размер капель увеличивается с увеличением диаметра выходного отверстия do и вязкости жидкости (1 и уменьшается с ростом давления перед форсункой. Обычно размер капель не превышает dк≤0,06do. Распределение капель по размерам хорошо подчиняется логарифмически нормальному закону. Для получения сплошного конуса распыления применяют форсунки с двойным подводом жидкости (рис. 10.2). При этом необходимо соблюдать правильное соотношение между вращающейся жидкостью и жидкостью, подаваемой в осевую струю. Двойной подвод жидкости значительно увеличивает диаметр получающихся капель.
Рис. 10.2. Форсунка с двойным подводом жидкости: 1 — корпус; 2 — завихритель
Основные типы форсунок, применяемых в установках газоочистки. При малых расходах жидкости (до 200 кг/ч) обычно применяют форсунки Григорьева — Поляка (рис. 10.3, а) или Кертинга (рис. 10.3, б). Основным элементом форсунки Григорьева — Поляка является грибок с проточенными в нем винтовыми канавками шириной 0,7 мм и глубиной 1,4 мм. Проходя через них, жидкость завихряется и выбрасывается через сопло. В форсунке Кертинга для придания жидкости вращательного движения используют винтовой завихритель. Меняя шаг винтовой линии и угол конусности наконечника, можно получать различную форму факела.
Форсунки Лехлера (рис. 10.3, в) имеют среднюю производительность (до 1200 кг/ч). Жидкость через сквозное отверстие во вкладыше подается в кольцевой паз, откуда по винтовым каналам направляется к выходному отверстию диаметром 6 мм. Большой производительностью (до 20 000 кг/ч) характеризуются эвольвентные форсунки (рис. 10.4, а) и форсунки с разбрызгивающим конусом (рис. 10.4, б). Большой диаметр выходного отверстия (до 25 мм) обеспечивает высокую производительность и надежность работы на оборотной воде. Однако грубое распыление жидкости не всегда допускает возможность их применения.
Рис. 10.3. Форсунки малой и средней производительности конструкции: а — Григорьева—Поляка; б — Кертинга; в — Лехлера. 1 — корпус; 2 — грибок,; 3 - распылитель; 4 — прокладка; 5 — накидная гайка; 6 — завихритель; 7 — вкладыш
Рис. 10.4. Форсунки большой производительности: а — эвольвентная; 6 — с разбрызгивающим конусом,; в — конструкции ВТИ с двойным подводом воды.
Особенностью форсунок ВТИ (рис. 10.4, в) является двойной подвод воды (осевой и тангенциальный), что обеспечивает получение сплошного конуса распыления.
Пневматические форсунки в установках газоочистки практически не применяются.
- § 1. Проблема охраны окружающей среды
- § 2. Предельно допустимые концентрации вредных веществ в атмосферном воздухе
- § 3. Общие вопросы защиты воздушного бассейна металлургических предприятий
- Часть I газоочистные аппараты
- Глава 1
- § 1. Основы классификации газоочистных аппаратов
- § 2. Оценка эффективности работы пылеуловителей
- Глава 2
- § 1. Движение частиц пыли в неподвижной среде
- § 2. Осаждение частиц пыли в камерах и газоходах
- Глава 3
- § 1. Сепарация частиц пыли из криволинейного потока газа
- § 2. Жалюзийные пылеуловители
- § 3. Радиальные пылеуловители (пылевые мешки)
- Глава 4
- § 1. Улавливание пыли в циклонах
- § 2. Типы циклонов и основные правила их эксплуатации
- § 3. Определение гидравлического сопротивления и размеров циклона
- § 4. Расчет эффективности циклонов
- § 5. Батарейные циклоны (мультициклоны)
- § 6. Вихревые пылеуловители
- § 7. Ротационные пылеуловители
- Глава 5
- § 1. Общие сведения о процессе фильтрования
- § 2. Характеристики пористой перегородки
- § 3. Механизмы процесса фильтрования
- § 4. Аналитическое определение эффективности и гидравлического сопротивления пористого фильтра
- Глава 6
- § 1. Волокнистые фильтры
- § 2. Тканевые фильтры
- § 3. Зернистые и металлокерамические фильтры
- § 4. Фильтры-туманоуловители
- § 5. Воздушные фильтры
- Глава 7
- § 1. Мокрая очистка газов и область ее применения
- § 2. Захват частиц пыли жидкостью
- §3. Энергетический метод расчета мокрых пылеуловителей
- §4. Тепло- и массообмен в мокрых пылеуловителях
- Глава 8
- §1. Форсуночные скрубберы
- § 2. Скрубберы Вентури
- Расчет скрубберов Вентури
- 3. Динамические газопромыватели
- Глава 9
- § 1. Мокрые аппараты центробежного действия
- § 2. Мокрые аппараты ударно-инерционного действия
- § 3. Тарельчатые газоочистные аппараты
- Глава 10
- § 1. Устройства для диспергирования жидкости
- § 2. Брызгоунос и сепарация капель из газового потока
- § 3. Водное хозяйство мокрых газоочисток
- Глава 11
- § 1. Ионизация газов и коронный разряд
- § 2. Физические основы электрической очистки газа
- § 3. Вольт амперные характеристики коронного разряда
- § 4. Теоретическая эффективность электрической очистки газа
- Глава 12
- § 1 Элементы конструкций электрофильтров
- § 2. Однозонные унифицированные сухие электрофильтры
- 3. Мокрые трубчатые однозонные электрофильтры типа дм
- § 4. Двухзонные электрофильтры
- Глава 13
- § 1. Способы повышения напряжения и выпрямления тока
- § 2. Методы регулирования напряжения на электродах
- § 3. Агрегаты питания электрофильтров
- § 4. Преобразовательные подстанции
- Глава 14
- § 1. Влияние различных факторов на работу электрофильтра
- § 2. Электрические режимы питания электрофильтров
- § 3. Эксплуатация электрофильтров
- § 4. Выбор и расчет эффективности электрофильтров
- Глава 15
- § 1. Основы процесса физической абсорбции
- § 2. Материальный баланс и основные уравнения процесса абсорбции
- § 3. Коэффициент абсорбции — массопередачи
- § 4. Абсорбционные аппараты и установки
- § 5. Основы расчета абсорберов
- Глава 16
- § 1. Физика процесса. Изотермы адсорбции
- § 2. Виды и характеристики адсорбентов
- § 3. Устройство и основы расчета адсорбентов с неподвижным слоем поглотителя
- § 4. Адсорберы с кипящим слоем поглотителя
- § 5. Ионообменная очистка газов
- Глава 17
- § 1. Охлаждение газов подмешиванием атмосферного воздуха
- § 2. Охлаждение газов в поверхностных теплообменниках
- § 3. Охлаждение газов при непосредственном контакте с водой
- Глава 18
- § 1. Конструкции и элементы газоходов
- § 2. Основы аэродинамического расчета газоотводящего тракта
- § 3. Выбор дымососов и вентиляторов
- § 4. Дымовые трубы
- Глава 19
- § 1. Устройства для выгрузки сухой пыли
- § 2. Устройства для удаления шлама
- § 3. Механическая транспортировка пыли
- § 4. Пневмотранспорт для удаления пыли
- Глава 20
- § 1. Расчет капитальных затрат и эксплуатационных расходов
- § 2. Оценка экономичности работы газоочисток
- § 3. Экономические показатели газоочисток различных типов
- § 4. Пути снижения себестоимости очистки газа
- § 5. Ущерб от загрязнения воздуха
- Глава 21
- § 1. Основы рационального выбора пылеуловителей
- § 2. Типизация газоочистных аппаратов
- § 3. Правила технической эксплуатации газоочистных установок
- § 4. Меры безопасности и охраны труда
- Часть II газоочистные установки различных производств черной металлургии
- Глава 22
- § 1. Характеристика выбросов агломерационного производства
- § 2. Отвод и обеспыливание газов агломерационных машин
- § 3. Улавливание и очистка вентиляционных и неорганизованных выбросов
- § 4. Очистка газов при производстве окатышей
- Глава 23
- § 1. Очистка газов от сернистого ангидрида. Классификация методов
- § 2. Известняково-известковые методы очистки
- § 3. Циклические сульфитные методы очистки от сернистого ангидрида
- § 4. Адсорбционные и каталитические методы очистки от сернистого ангидрида
- § 5. Очистка газов агломерационных машин от оксида углерода
- § 6. Очистка агломерационных газов от оксидов азота
- § 7. Комплексная схема очистки газов агломерационных машин
- Глава 24
- § 1. Свойства и выход коксового газа
- § 2. Очистка коксового газа
- § 3. Вредные выбросы коксохимического производства и их очистка
- Глава 25
- § 1. Характеристика доменного газа и колошниковой пыли
- § 2. Схемы очистки доменного газа
- § 3. Вредные выбросы доменного производства и их очистка
- § 4. Борьба с выбросами при грануляции шлака
- § 5. Выбросы миксерного отделения и их очистка
- Глава 26
- § 1. Характеристика отходящих газов и пыли
- § 2. Обеспыливание отходящих газов мартеновских печей
- § 3. Очистка отходящих газов двухванных печей
- § 4. Оксиды азота и борьба с ними в мартеновском производстве
- § 5. Неорганизованные выбросы и борьба с ними
- Глава 27
- § 1. Характеристика газопылевых выбросов
- § 2. Охлаждение конвертерных газов
- § 3. Газоотводящие тракты кислородных конвертеров
- § 4. Установки с полным дожиганием оксида углерода
- § 5. Установки с частичным дожиганием оксида углерода
- § 6. Установки без дожигания оксида углерода
- Глава 28
- § 1. Характеристика газопылевыделений
- § 2. Отсос и улавливание выделяющихся газов
- § 3. Способы очистки газов
- Глава 29
- §1. Пылегазовые выбросы ферросплавных печей
- § 2. Очистка газов закрытых ферросплавных печей
- § 3. Очистка газов открытых ферросплавных печей
- Характеристика выбросов печей ферросплавного производства.
- Как осуществляют очистку газов закрытых печей?
- Какие схемы применяют для очистки газов открытых печей?
- Глава 30
- § 1. Локализация и удаление выбросов прокатных станов
- § 2. Обеспыливание выбросов машин огневой зачистки (моз)
- § 3. Борьба с вредными выбросами травильных отделений
- Глава 31
- § 1. Обеспыливание отходящих газов в огнеупорных цехах
- § 2. Очистка вредных выбросов литейных цехов
- § 3. Очистка отходящих газов котельных агрегатов
- Часть III газоочистные установки различных производств цветной металлургии
- Глава 32
- § 1. Обеспыливание отходящих газов агломерационных машин
- § 2. Очистка отходящих газов шахтных печей для выплавки чернового свинца
- § 3. Очистка газов купеляционных печей и шлаковозгоночных установок
- § 4. Очистка газов при переработке вторичного свинцового сырья
- § 5. Обеспыливание отходящих газов обжиговых печей кипящего слоя (кс) цинкового производства
- § 6. Очистка газов вращающихся трубчатых печей (вельцпечей) цинкового производства
- § 7. Дополнительная очистка газов, идущих от печей кс на производство серной кислоты
- Глава 33 пылеулавливание в медной промышленности
- § 1. Очистка газов на заводах, выплавляющих медь из первичного сырья
- § 2. Очистка газов на медеплавильных заводах при переработке вторичного сырья
- § 3. Обеспыливание газов на медно-серных заводах
- Глава 34
- § 1. Пылеулавливание при производстве никеля
- § 2. Обеспыливание газов на оловянных заводах
- § 3. Пылеулавливание при производстве сурьмы
- § 4. Очистка газов при производстве ртути
- § 2. Очистка газов при производстве алюминия
- § 3. Обеспыливание газов при производстве силуминов (а1—Si сплавов)
- § 4. Очистка газов при производстве магния
- Глава 36
- 1. Улавливание хлоридов редких металлов
- § 2. Очистка газов при производстве рассеянных металлов
- § 3. Очистка газов при производстве тугоплавких металлов
- Глава 37
- § 1. Очистка технологических газов
- § 2. Очистка газов аспирационных систем
- Глава 38
- § 1. Промышленные способы очистки слабоконцентрированных отходящих газов от сернистого ангидрида
- § 2. Очистка газов от различных газообразных химических элементов и соединений
- Глава 39
- § 1. Особенности свойств пыли и газовых потоков
- § 2. Особенности выбора газоочистных аппаратов и эксплуатации газоочистных установок
- § 3. Особенности экономики газоочистных установок в цветной металлургии
- Глава 40
- § 1. Снижение вредных выбросов и совершенствование газоочистных аппаратов и установок
- § 2. Повышение уровня безотходности производства
- § 3. Оптимизация очередности внедрения мероприятий по защите воздушного бассейна
- § 4. Рациональное распределение топлива с целью уменьшения загрязнения атмосферы