§ 3. Механизмы процесса фильтрования
Осаждение частиц пыли на твердых элементах пористой перегородки происходит в силу различных факторов, вызывающих столкновение движущихся в потоке частиц пыли с элементами фильтрующего слоя. Эффективность действия того или иного механизма осаждения определяется коэффициентом захвата.
Для одиночного изолированного фильтрующего элемента коэффициент захвата 3 определяется как отношение площади сечения Fn набегающего потока, из которого все частицы полностью осаждаются на элементе, к площади проекции фильтрующего элемента F1 на плоскость, нормальную к направлению движения потока:
= Fп/F1 (5.9)
Для аналитического определения коэффициентов захвата необходимо использовать данные о поле скоростей при обтекании фильтрующего элемента. Такие данные имеются только для тел простейшей формы: шара, пластины, цилиндра. В большинстве случаев коэффициенты захвата определяют по формулам, использующим как теоретические, так и экспериментальные данные.
При определении коэффициентов захвата считают, что частица пыли, коснувшаяся фильтрующего элемента, удерживается на нем.
Механизм касания (прямого зацепления). Если частица движется по линии, проходящей около твердого элемента фильтра на расстоянии, меньшем радиуса частицы или равном ему, она коснется этого элемента и удержится на нем (рис. 5,1). Определяющим параметром эффекта касания является отношение размера частицы r к размеру твердого элемента филь r0:
R = r/r0.
Рассматривая обтекание одиночного цилиндра потоком газа применительно к волокнистым фильтрам, можно получить формулы для определения коэффициента захвата за счет касания:
а) для вязкого обтекания
; (5.10)
б) для потенциального обтекания
, (5.11)
где Re — число Рейнольдса, отнесенное к обтекаемому цилиндру.
Рис 5.1. Механизм процесса фильтрования: 1 — механизм касания; 2 — инерционный механизм; 3 — диффузионный механизм; 4 — электростатический механизм.
Инерционный механизм. Механизм захвата за счет инерции тем эффективнее, чем выше скорость фильтрации и больше масса частицы. При обтекании твердого элемента фильтра цилиндра (волокна) или шара (зерна) линии тока искривляются, а частица пыли, стремясь в силу инерции сохранить движение прямолинейным, смещается с линии тока и направляется к поверхности твердого элемента, на котором и оседает (см. рис. 5.1). Определяющим параметром инерционного осаждения является критерий Стокса, характеризующий отношение инерционной силы, действующей на частицу, к силе сопротивления среды:
Stk = d2w3ч/18do, (5-12)
где d—-диаметр частицы, м; w — скорость обтекания препятствия, м/с; ч — плотность частиц пыли, кг/м3; — вязкость газа, Па·с; d0 — определяющий размер твердого элемента фильтра, м.
Коэффициент захвата за счет инерции для одиночного цилиндра (волокна) можно выразить следующей формулой:
. (5.13)
При эксплуатации промышленных фильтров в большинстве случаев для частиц размером больше 1 мкм инерционный механизм захвата имеет решающее значение.
Диффузионный механизм. За счет неуравновешенных ударов молекул, находящихся в броуновском движении, происходит смещение мелких частиц аэрозоля с линий тока и осаждение их на обтекаемых препятствиях. Чем меньше частицы и меньше скорость течения, тем резче выражен этот эффект. Средний квадрат теплового смещения частицы в данном направлении за время t пропорционален коэффициенту диффузии DД и определяется уравнением Эйнштейна: .
Коэффициент диффузии Dд резко уменьшается с увеличением размеров частиц, вследствие чего диффузионный эффект достаточно значителен лишь для частиц размером менее 0,1 мкм.
Используя теорию случайных блужданий, Ленгмюр получил для коэффициента захвата за счет молекулярной диффузии для одиночного цилиндра (волокна) следующее выражение:
, (5.14)
где Ре — критерий Пекле, характеризующий относительную роль конвекции и диффузии в подводе частицы к поверхности цилиндра и выводе ее из движущегося потока аэрозоля. Ре = 2r0w/DД; a — плотность упаковки.
Из приведенных уравнений вытекает, что эффективность диффузионного осаждения возрастает с уменьшением размеров частиц и скорости фильтрации.
Гравитационный механизм. Захват частиц может осуществляться за счет осаждения их под действием силы тяжести. Коэффициент захвата для одиночного цилиндра, расположенного поперек вертикально направленного потока газа, может быть определен из выражения
, (5.15)
где wS — установившаяся скорость седиментации частицы; wг — скорость газового потока; Fr — критерий Фруда, характеризующий соотношение инерционных и гравитационных сил; Fr = = wS2/2r0g; g — ускорение свободного падения; g = 9,81 м/с2; С — постоянный коэффициент; G — седиментационный параметр.
При горизонтальном течении газа .
В обычных условиях промышленного фильтрования гравитационный механизм играет очень незначительную роль и становится заметным лишь при очень низких скоростях фильтрования (<0,05 см/с).
Электростатический механизм. В случае, если волокно фильтра несет электростатический заряд или поляризовано внешним электрическим полем, оно создает вокруг себя неравномерное электрическое поле. Нейтральные частицы пыли поляризуются этим полем и притягиваются к поверхности волокна, причем знак заряда волокна в этом случае роли не играет.
Формула для определения коэффициента захвата в этом случае имеет вид
, (5.16)
где Е0 — напряженность электрического поля у поверхности волокна; δ — показатель диэлектрических свойств частиц пыли.
Коэффициент электростатического захвата растет с увеличением напряженности поля Е и размера частиц r и уменьшается с возрастанием скорости фильтрования, вязкости газа и толщины волокна.
Суммарный коэффициент захвата. При обтекании одиночного цилиндра в той или иной степени могут проявляться все рассмотренные выше механизмы осаждения. Однако простое суммирование коэффициентов захвата по различным механизмам не дает точных результатов, так как не учитывает влияния одновременного действия нескольких механизмов на общий коэффициент захвата.
Наилучшие результаты получаются при вычислении суммарного коэффициента захвата по формуле
. (5.17)
В конкретных условиях суммарный коэффициент захвата определяют по наиболее вероятным механизмам осаждения, для которых величина максимальна. Остальными второстепенными механизмами осаждения в первом приближении можно пренебречь.
- § 1. Проблема охраны окружающей среды
- § 2. Предельно допустимые концентрации вредных веществ в атмосферном воздухе
- § 3. Общие вопросы защиты воздушного бассейна металлургических предприятий
- Часть I газоочистные аппараты
- Глава 1
- § 1. Основы классификации газоочистных аппаратов
- § 2. Оценка эффективности работы пылеуловителей
- Глава 2
- § 1. Движение частиц пыли в неподвижной среде
- § 2. Осаждение частиц пыли в камерах и газоходах
- Глава 3
- § 1. Сепарация частиц пыли из криволинейного потока газа
- § 2. Жалюзийные пылеуловители
- § 3. Радиальные пылеуловители (пылевые мешки)
- Глава 4
- § 1. Улавливание пыли в циклонах
- § 2. Типы циклонов и основные правила их эксплуатации
- § 3. Определение гидравлического сопротивления и размеров циклона
- § 4. Расчет эффективности циклонов
- § 5. Батарейные циклоны (мультициклоны)
- § 6. Вихревые пылеуловители
- § 7. Ротационные пылеуловители
- Глава 5
- § 1. Общие сведения о процессе фильтрования
- § 2. Характеристики пористой перегородки
- § 3. Механизмы процесса фильтрования
- § 4. Аналитическое определение эффективности и гидравлического сопротивления пористого фильтра
- Глава 6
- § 1. Волокнистые фильтры
- § 2. Тканевые фильтры
- § 3. Зернистые и металлокерамические фильтры
- § 4. Фильтры-туманоуловители
- § 5. Воздушные фильтры
- Глава 7
- § 1. Мокрая очистка газов и область ее применения
- § 2. Захват частиц пыли жидкостью
- §3. Энергетический метод расчета мокрых пылеуловителей
- §4. Тепло- и массообмен в мокрых пылеуловителях
- Глава 8
- §1. Форсуночные скрубберы
- § 2. Скрубберы Вентури
- Расчет скрубберов Вентури
- 3. Динамические газопромыватели
- Глава 9
- § 1. Мокрые аппараты центробежного действия
- § 2. Мокрые аппараты ударно-инерционного действия
- § 3. Тарельчатые газоочистные аппараты
- Глава 10
- § 1. Устройства для диспергирования жидкости
- § 2. Брызгоунос и сепарация капель из газового потока
- § 3. Водное хозяйство мокрых газоочисток
- Глава 11
- § 1. Ионизация газов и коронный разряд
- § 2. Физические основы электрической очистки газа
- § 3. Вольт амперные характеристики коронного разряда
- § 4. Теоретическая эффективность электрической очистки газа
- Глава 12
- § 1 Элементы конструкций электрофильтров
- § 2. Однозонные унифицированные сухие электрофильтры
- 3. Мокрые трубчатые однозонные электрофильтры типа дм
- § 4. Двухзонные электрофильтры
- Глава 13
- § 1. Способы повышения напряжения и выпрямления тока
- § 2. Методы регулирования напряжения на электродах
- § 3. Агрегаты питания электрофильтров
- § 4. Преобразовательные подстанции
- Глава 14
- § 1. Влияние различных факторов на работу электрофильтра
- § 2. Электрические режимы питания электрофильтров
- § 3. Эксплуатация электрофильтров
- § 4. Выбор и расчет эффективности электрофильтров
- Глава 15
- § 1. Основы процесса физической абсорбции
- § 2. Материальный баланс и основные уравнения процесса абсорбции
- § 3. Коэффициент абсорбции — массопередачи
- § 4. Абсорбционные аппараты и установки
- § 5. Основы расчета абсорберов
- Глава 16
- § 1. Физика процесса. Изотермы адсорбции
- § 2. Виды и характеристики адсорбентов
- § 3. Устройство и основы расчета адсорбентов с неподвижным слоем поглотителя
- § 4. Адсорберы с кипящим слоем поглотителя
- § 5. Ионообменная очистка газов
- Глава 17
- § 1. Охлаждение газов подмешиванием атмосферного воздуха
- § 2. Охлаждение газов в поверхностных теплообменниках
- § 3. Охлаждение газов при непосредственном контакте с водой
- Глава 18
- § 1. Конструкции и элементы газоходов
- § 2. Основы аэродинамического расчета газоотводящего тракта
- § 3. Выбор дымососов и вентиляторов
- § 4. Дымовые трубы
- Глава 19
- § 1. Устройства для выгрузки сухой пыли
- § 2. Устройства для удаления шлама
- § 3. Механическая транспортировка пыли
- § 4. Пневмотранспорт для удаления пыли
- Глава 20
- § 1. Расчет капитальных затрат и эксплуатационных расходов
- § 2. Оценка экономичности работы газоочисток
- § 3. Экономические показатели газоочисток различных типов
- § 4. Пути снижения себестоимости очистки газа
- § 5. Ущерб от загрязнения воздуха
- Глава 21
- § 1. Основы рационального выбора пылеуловителей
- § 2. Типизация газоочистных аппаратов
- § 3. Правила технической эксплуатации газоочистных установок
- § 4. Меры безопасности и охраны труда
- Часть II газоочистные установки различных производств черной металлургии
- Глава 22
- § 1. Характеристика выбросов агломерационного производства
- § 2. Отвод и обеспыливание газов агломерационных машин
- § 3. Улавливание и очистка вентиляционных и неорганизованных выбросов
- § 4. Очистка газов при производстве окатышей
- Глава 23
- § 1. Очистка газов от сернистого ангидрида. Классификация методов
- § 2. Известняково-известковые методы очистки
- § 3. Циклические сульфитные методы очистки от сернистого ангидрида
- § 4. Адсорбционные и каталитические методы очистки от сернистого ангидрида
- § 5. Очистка газов агломерационных машин от оксида углерода
- § 6. Очистка агломерационных газов от оксидов азота
- § 7. Комплексная схема очистки газов агломерационных машин
- Глава 24
- § 1. Свойства и выход коксового газа
- § 2. Очистка коксового газа
- § 3. Вредные выбросы коксохимического производства и их очистка
- Глава 25
- § 1. Характеристика доменного газа и колошниковой пыли
- § 2. Схемы очистки доменного газа
- § 3. Вредные выбросы доменного производства и их очистка
- § 4. Борьба с выбросами при грануляции шлака
- § 5. Выбросы миксерного отделения и их очистка
- Глава 26
- § 1. Характеристика отходящих газов и пыли
- § 2. Обеспыливание отходящих газов мартеновских печей
- § 3. Очистка отходящих газов двухванных печей
- § 4. Оксиды азота и борьба с ними в мартеновском производстве
- § 5. Неорганизованные выбросы и борьба с ними
- Глава 27
- § 1. Характеристика газопылевых выбросов
- § 2. Охлаждение конвертерных газов
- § 3. Газоотводящие тракты кислородных конвертеров
- § 4. Установки с полным дожиганием оксида углерода
- § 5. Установки с частичным дожиганием оксида углерода
- § 6. Установки без дожигания оксида углерода
- Глава 28
- § 1. Характеристика газопылевыделений
- § 2. Отсос и улавливание выделяющихся газов
- § 3. Способы очистки газов
- Глава 29
- §1. Пылегазовые выбросы ферросплавных печей
- § 2. Очистка газов закрытых ферросплавных печей
- § 3. Очистка газов открытых ферросплавных печей
- Характеристика выбросов печей ферросплавного производства.
- Как осуществляют очистку газов закрытых печей?
- Какие схемы применяют для очистки газов открытых печей?
- Глава 30
- § 1. Локализация и удаление выбросов прокатных станов
- § 2. Обеспыливание выбросов машин огневой зачистки (моз)
- § 3. Борьба с вредными выбросами травильных отделений
- Глава 31
- § 1. Обеспыливание отходящих газов в огнеупорных цехах
- § 2. Очистка вредных выбросов литейных цехов
- § 3. Очистка отходящих газов котельных агрегатов
- Часть III газоочистные установки различных производств цветной металлургии
- Глава 32
- § 1. Обеспыливание отходящих газов агломерационных машин
- § 2. Очистка отходящих газов шахтных печей для выплавки чернового свинца
- § 3. Очистка газов купеляционных печей и шлаковозгоночных установок
- § 4. Очистка газов при переработке вторичного свинцового сырья
- § 5. Обеспыливание отходящих газов обжиговых печей кипящего слоя (кс) цинкового производства
- § 6. Очистка газов вращающихся трубчатых печей (вельцпечей) цинкового производства
- § 7. Дополнительная очистка газов, идущих от печей кс на производство серной кислоты
- Глава 33 пылеулавливание в медной промышленности
- § 1. Очистка газов на заводах, выплавляющих медь из первичного сырья
- § 2. Очистка газов на медеплавильных заводах при переработке вторичного сырья
- § 3. Обеспыливание газов на медно-серных заводах
- Глава 34
- § 1. Пылеулавливание при производстве никеля
- § 2. Обеспыливание газов на оловянных заводах
- § 3. Пылеулавливание при производстве сурьмы
- § 4. Очистка газов при производстве ртути
- § 2. Очистка газов при производстве алюминия
- § 3. Обеспыливание газов при производстве силуминов (а1—Si сплавов)
- § 4. Очистка газов при производстве магния
- Глава 36
- 1. Улавливание хлоридов редких металлов
- § 2. Очистка газов при производстве рассеянных металлов
- § 3. Очистка газов при производстве тугоплавких металлов
- Глава 37
- § 1. Очистка технологических газов
- § 2. Очистка газов аспирационных систем
- Глава 38
- § 1. Промышленные способы очистки слабоконцентрированных отходящих газов от сернистого ангидрида
- § 2. Очистка газов от различных газообразных химических элементов и соединений
- Глава 39
- § 1. Особенности свойств пыли и газовых потоков
- § 2. Особенности выбора газоочистных аппаратов и эксплуатации газоочистных установок
- § 3. Особенности экономики газоочистных установок в цветной металлургии
- Глава 40
- § 1. Снижение вредных выбросов и совершенствование газоочистных аппаратов и установок
- § 2. Повышение уровня безотходности производства
- § 3. Оптимизация очередности внедрения мероприятий по защите воздушного бассейна
- § 4. Рациональное распределение топлива с целью уменьшения загрязнения атмосферы