2.3. Гидравлический расчет трубопроводов
Основной задачей гидравлического расчета является определение диаметра d трубопровода и потери напора h по заданной производительности Q.
Расчет вновь проектируемого трубопровода начинают с предварительного выбора диаметра и ориентировочно выбранной скорости ω движения жидкости.
По скорости ω, диаметру d и вязкости у устанавливается параметр Рейнольдса Re и характер движения жидкости. Затем определяют коэффициент гидравлического сопротивления λ, гидравлический уклон i и потерю напора h на трение в трубопроводе.
В гидравлике различают два основных режима: ламинарный и турбулентный. Между ними лежит неопределенный режим, при котором в трубопроводе может наблюдаться то ламинарное, то турбулентное движение.
Для определения режима движения служит параметр Рейнольдса:
Re = ω d/γ,
где ω - скорость движения жидкости в трубопроводе, м/с; d -диаметр трубопровода, м; γ - кинематическая вязкость, м2/с.
Установлено, что при Re > 2320 в трубопроводе кругового сечения всегда имеет место турбулентный режим Re <, а при 2320 - ламинарный.
Перемещение жидкости связано с потерей напора. При перемещении ее по трубопроводам насос должен развивать напор, необходимый для преодоления гидравлических сопротивлений трения по длине трубопровода, местных сопротивлений (вентили, изгибы, повороты), геометрической высоты, равной разности отметок уровней жидкости в конечном и начальном пунктах перекачки, и на создание скоростного напора жидкости.
Величина потери напора на трение по длине для труб круглого сечения, выражается следующим уравнением гидравлики:
h=λlω2/2dg, (2.1)
где λ - коэффициент гидравлического сопротивления; ω - средняя скорость движения жидкости, м/с.
Если потерю напора выразить через расход, то уравнение (2.1) примет вид:
h=8λlQ2/(π2gd5). (2.2)
В отдельных случаях формулу (2.2) применяют в виде
h =βQ2-m γml/d5-m, (2.3)
где β и т - коэффициенты, зависящие от режима движения.
Гидравлический уклон:
i = h/l = λω2 / (2dg) = tga,
где λ - зависит от режима движения жидкости и от степени шероховатости стенок трубопровода.
Под шероховатостью понимают неровности (выступы) на внутренних поверхностях стенок. Различают абсолютную и относительную шероховатость.
Абсолютной шероховатостью ε называется абсолютная высота выступов на внутренней поверхности трубопровода. Относительная шероховатость ε есть отношение абсолютной шероховатости к внутреннему радиусу трубопровода:
ε = е/r.
Трубы имеют шероховатость различных размеров и неравномерную по длине трубы. Поэтому для характеристики шероховатости пользуются эквивалентной (усредненной) шероховатостью К1. Она зависит от материала труб, продолжительности эксплуатации, явлений коррозии и эрозии. Для большинства стальных труб эквивалентная шероховатость 0,1—0,2 мм. Опытами установлено, что для нефтепроводных и газопроводных труб
К1 = 0,14—0,15 мм.
Трубопроводы разделяются на гидравлически гладкие и гидравлически шероховатые. Гидравлически гладкими называются трубопроводы, в которых отдельные струи потока, двигаясь параллельно друг другу, плавно обтекают все неровности на внутренней поверхности трубы, в результате чего шероховатость не оказывает влияния на сопротивление потока. Такое явление наблюдается при ламинарном режиме. Коэффициент гидравлического сопротивления λ для гидравлически гладких труб зависит от числа Re и не зависит от степени шероховатости стенок труб.
С увеличением турбулентности толщина пограничного слоя уменьшается, становится меньше абсолютной шероховатости ε и в результате при соприкосновении жидкости со стенкой трубы получаются дополнительные завихрения, создаваемые выступами за счет которых величина коэффициента гидравлического сопротивления увеличивается. В этом случае коэффициент сопротивления зависит от шероховатости стенок трубопровода и числа Рейнольдса (зона смешанного трения). При дальнейшем увеличении числа Рейнольдса повышается турбулентность потока и, начиная с определенного значения Рейнольдса, коэффициент λ будет зависеть только от шероховатости труб (квадратичная зона). При перекачке нефти режим квадратичного сопротивления не наблюдается. Он встречается при транспорте газа. В нефтепроводах чаще встречается режим гидравлически гладкого трения (Re < Re1), в продуктопроводах - смешанное трение (Re1 < Re < ReII).
Величина коэффициента гидравлического сопротивления при ламинарном режиме, когда Re < 2320, независимо от степени шероховатости трубы, определяется по формуле Стокса:
λ = 64 / Re.
Для ламинарного режима коэффициенты в формуле (2.3) равны m=lиβ = 128/(πg).
При Re > 3000 всегда имеет место турбулентный режим. Коэффициенты m и β при турбулентном режиме в зоне гидравлически гладких труб m = 0,25 и β = 0,241/g, а при квадратичном законе сопротивления (для гидравлически шероховатых труб) m = 0 и β =8λ/(π2g).
Для расчета коэффициентов гидравлического сопротивления при турбулентном режиме для разных чисел Рейнольдса рекомендуется пользоваться формулами:
Блазиуса λ = 0,3164 · Re-0,25;
Исаева l/λ1/2 = -l,81g(6,8/Re+ε');
Никурадзе λ =l/(l,74 + 2lgd/2Kl)2.
Многие вязкие нефтепродукты при низких температурах (вблизи температуры застывания) не подчиняются закону Ньютона, а следуют закону Шведова - Бингхема, так как обладают динамическим сопротивлением сдвига. Они текут по трубам особенным образом: центральная часть потока движется как твердое тело, а периферийная - течет как жидкость ламинарно. Такой режим движения называют структурным.
Потеря напора на местные сопротивления определяется по формуле
hм.с = Σ εω2 / (2g), (2.4)
где Σε - сумма коэффициентов местных сопротивлений на расчетном участке; ω - скорость за местом сопротивления.
Иногда величину местного сопротивления определяют через эквивалентную длину прямого участка трубы (под этим понимается длина такого участка трубы, на котором потеря напора эквивалентна потере в местном сопротивлении).
Эквивалентная длина прямого участка определится, если приравнять правые части уравнений (2.1) и (2.4) и обозначить l через lэкв:
lэкв = εd / λ.
Суммарная потеря напора в трубопроводе определяется по формуле
Н = hT + hCK ± Нст,
где hT - потери напора на трение по длине и в местных сопротивлениях, м ст. жидк.; hCK =ωmax l(2g) - потери на участке, которому соответствует наибольшая скорость движения нефтепродукта (в местах сужения трубопровода), м ст. жидк.; Нст - разность отметок уровней жидкости в конце и начале трубопровода (на какую высоту приходится поднимать жидкость).
Гидравлический расчет заканчивается подбором насоса по значениям подачи и напора и определением действительной производительности при работе принятого насоса на данный трубопровод.
- Российская федерация
- Автономная некоммерческая организация
- «Учебно-методический центр»
- «Статус»
- Учебно – методическое пособие
- Транспорт нефти и нефтепродуктов
- 1.1. Общие сведения о транспорте и нефтепродуктах
- 1.2. Железнодорожный транспорт. Общая характеристика
- 1.3. Водный транспорт
- 1.4. Автомобильный транспорт
- 1.5. Трубопроводный транспорт
- 2. Гидравлические расчеты магистральных нефтепроводов. Основные факторы, влияющие на перекачку жидкостей
- 2.1. Трасса трубопровода и ее профиль
- 2.2. Гидравлический уклон
- 2.3. Гидравлический расчет трубопроводов
- 2.4. Характеристика трубопровода
- 2.5. Совмещенная характеристика насосных станций и трубопровода
- 2.6. Расчет сложных трубопроводов
- 3. Сортамент труб и элементы трубопроводных коммуникаций
- 3.1. Рукава
- 3.2. Соединения труб
- 3.3. Прокладки для фланцевых соединений
- 4. Арматура трубопроводов
- 4.1. Регулирующая арматура
- 4.2. Предохранительная арматура
- 4.3. Приводы для управления трубопроводной арматурой
- 5. Прокладка трубопроводов
- 5.1. Компенсация тепловых удлинений трубопроводов
- 5.2. Компенсаторы
- 6. Опоры трубопроводов
- 6.1. Расчет трубопроводов на прочность
- 6.2. Защита трубопроводов от коррозии
- 7. Резервуары для хранения нефти и нефтепродуктов
- Стальные резервуары
- Неметаллические резервуары
- 8. Оборудование резервуаров
- Перепускным устройством и механизмом управления хлопушкой
- Гидравлический клапан типа
- 9. Расчет вертикальных цилиндрических резервуаров
- 9.1. Резервуары с постоянной толщиной стенки
- 9.2. Резервуары с переменной толщиной стенки
- 10. Подогрев нефти и нефтепродуктов
- 10.1. Назначение, способы подогрева и теплоносители
- 10.2. Конструкции и расчет подогревателей
- 11. Потери нефти и нефтепродуктов. Классификация потерь
- 12. Основные способы перекачки высоковязких и высокозастывающих нефтей и нефтепродуктов
- 12.1. Перекачка с разбавителями
- 12.2. Гидротранспорт вязкой нефти
- 12.3. Перекачка термообработанной нефти
- 12.4. Перекачка нефти с присадками
- 12.5. Перекачка предварительно подогретой нефти
- 13. Транспорт газа
- 13.1. Классификация и состав природных и искусственных газов
- Физико-химические свойства углеводородных газов
- 13.2. Основные законы газового состояния
- 13.3. Общие сведения о транспорте газа
- 13.4. Компрессорные станции газопроводов
- 13.5. Удаление примесей из газа
- Очистка газа от газообразных примесей
- Очистка газа от сероводорода и углекислоты
- 13.6. Одоризация газа
- Промысловые резервуары
- Оборудование резервуаров
- Борьба с потерями нефти
- Потери при закачке промысловых сточных вод
- Приборы для измерения давления, температуры, расхода, уровня
- Жидкостные манометры
- Деформационные манометры
- Измерение температуры
- Измерение уровня жидкости
- Измерение расхода и количества жидкостей
- Автоматические средства измерения содержания в нефти воды, солей, плотности
- Учет нефти
- Учет нефти в резервуарах
- Учет нефти по счетчикам
- Обслуживание резервуарных парков
- Охрана труда и противопожарные мероприятия. Охрана окружающей среды Инструктаж и обучение безопасным методам труда
- Токсичность, вредность нефти и применяющихся в добыче нефти веществ
- Производственное освещение
- Классификация насосов
- Свойства и классификация перекачиваемых жидкостей
- Динамические насосы основные зависимости
- Характеристики насосов и способы их регулирования
- Конструктивное исполнение насосов
- Нефтяные насосы
- Пуск и остановка насосного агрегата
- Характерные неисправности в работе насосных агрегатов
- 14. Вопросы для самопроверки
- Литература