Технічні засоби підтримки комп'ютерної графіки
Розвиток комп'ютерної графіки багато в чому обумовлено розвитком технічних засобів її підтримки. Насамперед це пристрою виводу, якимись є дисплеї. У цей час існує кілька типів дисплеїв, що використовують електронно-променеву трубку, а також дисплеї на рідкокристалічні індикаторах і інші їхні види.
Виникнення комп'ютерної графіки, як уже говорилося раніше, можна віднести до 50-х років. Дисплейна графіка на першому етапі свого розвитку використовувала електронно-променеві трубки (ЕПТ) з довільним скануванням лучачи для виводу у вигляді зображення інформації з ЕОМ. З експерименту в Масачусетському технологічному інституті почався етап розвитку векторних дисплеїв (дисплеїв з довільним скануванням лучачи).
Найпростішим із пристроїв на ЕПТ є дисплей на запам'ятовувальній трубці із прямим копіюванням зображення. Запам'ятовувальна трубка має властивість тривалого часу післясвітіння: зображення залишається видимим протягом тривалого часу (до однієї години). При виводі зображення інтенсивність електронного променя збільшують до рівня, при якому відбувається запам'ятовування сліду лучачи на люмінофорі. Складність зображення практично не обмежена. Стирання відбувається шляхом подачі на всю трубку спеціальної напруги, при якому світіння зникає, і ця процедура займає приблизно 0,5 с. Тому зображення, отримані на екрані, не можна стерти частково, а стало бути, динамічні зображення або анімація на такому дисплеї неможливі. Дисплей на запам'ятовувальній трубці є векторним, або дисплеєм з довільним скануванням, тобто він дозволяє провести відрізок з однієї адресуемої крапки в будь-яку іншу. Його досить легко програмувати, але рівень інтерактивності в нього нижче, ніж у ряду дисплеїв інших типів через низьку швидкість і погані характеристики стирання.
Наступний тип – це векторні дисплеї з регенерацією зображення. При переміщенні лучачи по екрані в крапці, на якій потрапив промінь, збуджується світіння люмінофора екрана. Це світіння досить швидко припиняється при переміщенні лучачи в іншу позицію (звичайний час післясвітіння - менш 0,1 с). Тому, для того щоб зображення було постійно видимим, доводиться його "перемальовувати" (регенерувати зображення) 50 або 25 разів у секунду. Необхідність регенерації зображення вимагає збереження його опису в спеціально виділеній пам'яті, називаною пам'яттю регенерації. Сам опис зображення називається дисплейним файлом. Зрозуміло, що такий дисплей вимагає досить швидкого процесора для обробки дисплейного файлу й керування переміщенням лучачи по екрані.
Звичайно серійні векторні дисплеї встигали 50 разів у секунду будувати тільки близько 3000-4000 відрізків. При більшому числі відрізків зображення починає мерехтіти, тому що відрізки, побудовані на початку чергового циклу, повністю гаснуть до того моменту, коли будуть будуватися останні.
Іншим недоліком векторних дисплеїв є мале число градацій по яскравості (звичайно від двох до чотирьох). Текстовий діалог підтримується за допомогою алфавітно-цифрової клавіатури. Непрямий графічний діалог, як і у всіх інших дисплеях, здійснюється переміщенням перехрестя (курсору) по екрані за допомогою тих або інших засобів керування перехрестям - координатних коліс, що управляє важеля (джойстика), трекбола (кульової рукоятки), планшета й т.д. Відмітною рисою векторних дисплеїв є можливість безпосереднього графічного діалогу, що полягає в простій вказівці за допомогою світлового пера об'єктів на екрані (ліній, символів і т.д.).
Векторні дисплеї звичайно підключаються до ЕОМ високошвидкісними каналами зв'язку. Перші серійні векторні дисплеї за рубежем з'явилися наприкінці 1960-х років.
Прогрес у технології мікроелектроніки привів до того, що із середини 1970-х років переважне поширення одержали дисплеї з растровим скануванням лучачи. Растровий пристрій можна розглядати як матрицю дискретних крапок (пікселів), кожна з яких може бути підсвічена. Таким чином, воно є точечним пристроєм, що малює. Тому будь-який зображуваний на екрані дисплея відрізок будується за допомогою послідовності крапок, що апроксимують ідеальну траєкторію відрізка, подібно тому, як можна будувати зображення по клітках на картатому листку паперу. При цьому відрізок виходить прямим тільки у випадках, коли він горизонтальний, вертикальний або спрямований під кутом 45° до горизонталі. Всі інші відрізки виглядають як послідовність "сходів" (східчастий ефект).
При побудові зображення в растрових графічних пристроях використовується буфер кадру, що представляє собою велика безперервна ділянка пам'яті комп'ютера. Для кожної крапки в растрі приділяється як мінімум один біт пам'яті. Буфер кадру сам по собі не є пристроєм виводу, він лише використовується для зберігання малюнка. Найбільше часто як пристрій виводу, використовуваного з буфером кадру, виступає відеомонітор.
Дисплеї на рідкокристалічних індикаторах працюють аналогічно індикаторам в електронних годинниках, але, звичайно, зображення складається не з декількох великих сегментів, а з великого числа окремо керованих крапок. Ці дисплеї мають найменші габарити й енергоспоживання, тому широко використовуються в портативних комп'ютерах. Вони мають як переваги, так і недоліки в порівнянні з дисплеями на ЕЛТ. Хоча історично такий спосіб виводу зображення з'явився раніше, ніж растровий дисплей з ЕЛТ, але швидко розвиватися він почав значно пізніше. Ці дисплеї також є растровими пристроями (їх теж можна представити як матрицю елементів - рідких кристалів).
Крім дисплеїв, як пристрої виводу зображень використовуються плотери (графобудівники), призначені для виводу графічної інформації на папір. Ранні графічні пакети були орієнтовані саме на модель пір'яного плотера, що формує зображення за допомогою пера. Перо може переміщатися уздовж двох напрямних, відповідним двом координатним осям, причому воно може перебувати у двох станах - піднятому й опущеному. У піднятому стані воно просто переміщається над поверхнею паперу, а в опущеному залишає на папері лінії, що формують зображення. Таким чином, плотер стоїть ближче до векторних дисплеїв, але відрізняється від них тим, що стирати виведені зображення неможливо. Тому для них зображення спочатку повністю форму-ється в пам'яті комп'ютера, а потім виводиться. Крім того, варто згадати принтери, що виводять зображення на папір або плівку. Зображення, одержуване за допомогою сучасних принтерів, також фор-мується як крапкове (растрове), але, як правило, із кращим дозволом, чим екранне.
Пристрої, які дозволяють організувати діалог " людин-комп'ютер".
Першу групу пристроїв, за допомогою яких користувач може вказати позицію на екрані, назвемо пристроями вказівки (pointing device): миша, трекбол (trackball), світлове перо (lightpen), джойстик (joystick), спейсбол (spaceball). Практично всі пристрої цієї групи оснащені парою або декількома кнопками, які дозволяють сформувати й передати в комп'ютер які-небудь сигнали або переривання.
Миша і трекбол схожі не тільки по призначенню, але часто й по конструкції. У механічній миші й трекболі обертання кульки перетвориться за допомогою пари перетворювачів у сигнали, передані в комп'ютер. Перетворювачі вимірюють обертання щодо двох взаємно перпендикулярних осей. Існує дуже багато модифікацій пристроїв цих груп. В оптичній миші використовуються не механічні, а оптичні чутливі елементи для виміру переміщення: виміряється відстань шляхом підрахунку штрихів на спеціальній підложці. Маленькі трекболи широко застосовуються в портативних комп'ютерах, де їх вбудовують прямо в клавіатуру.
Вихідні сигнали миші або трекбола можна розглядати як дві незалежні величини й перетворювати їх у координати положення на двовимірній площині екрана або в якій-небудь іншій системі координат. Лічені із пристрою значення можна відразу ж використовувати для керування спеціальною оцінкою (курсором) на екрані.
Ветераном серед пристроїв уведення в комп'ютерній графіці є пристрій, названий при його створенні світловим пером. Уперше воно з'явилося у вже згаданому проекті А.Сазерленда Sketchpad. Світлове перо містить фоточутливий елемент, що при наближенні до екрана сприймає випромінювання, породжуване при зіткненні електронів з люмінофорним покриттям екрана. Якщо потужність світлового імпульсу перевищує певний поріг, фоточутливий елемент формує імпульс, що передається в комп'ютер. Аналізуючи зсув за часом цього імпульсу відносно початку циклу регенерації, комп'ютер може точно визначити координати тої крапки екрана, порушення якої "висвітило" фотоелемент.
Ще один пристрій, що досить активно використовується в мультимедійних додатках, а також у різного роду комп'ютерних тренажерах - джойстик. Переміщення джойстика у двох взаємно перпендикулярних напрямках сприймається перетворювачами, інтерпретується як вектор швидкості, а отримані значення використовуються для керування положенням маркера на екрані. Обробка сигналу виконується таким чином, що нерухливий джойстик у якому- або проміжному положенні не змінює положення маркера, а чим далі джойстик відхилений від початкового положення, тим швидше маркер переміщається по екрані. Таким чином, джойстик відіграє роль пристрою уведення зі змінною чутливістю. Інше достоїнство джойстика - наявність силового зворотного зв'язка, забезпеченої наявністю різного роду пружин.
Спейсбол - це "тривимірне" пристрій уведення. Хоча й існують різні конструкції таких пристроїв, вони усе ще не одержали широкого поширення, оскільки програють популярним двовимірним пристроям як за вартістю, так і по технічних характеристиках. Спейсбол схожий на джойстик, але відрізняється від нього тим, що він має вигляд закріпленого на рукоятці кулі, причому рукоятка в цій конструкції нерухлива. Куля має датчики тиску, які вимірюють зусилля, що прикладається користувачем.
Існують і інші тривимірні системи виміру й уведення, що використовують найсучасніші технології, наприклад лазерні. Останнім часом з'явилися нові розробки в цьому напрямку, зокрема - рукавички із системою датчиків, які здатні вловлювати руху окремих частин руки людини.
При уведенні в комп'ютер графіків прикладній програмі найчастіше потрібні абсолютні координати пристрою уведення. Таку можливість забезпечують різного роду планшети. У планшеті застосовується, як правило, ортогональна сітка проводів, розташована під його поверхнею. Положення пера визначається через електромагнітну взаємодію сигналів, що проходять від проводів до щупа. Іноді як планшет використовуються чутливі до дотику прозорі екрани, які наносяться на поверхню ЕЛТ. Невеликі екрани такого типу розміщаються іноді на клавіатурі портативних комп'ютерів. Чутливі панелі можна використовувати в режимах як абсолютних, так і відносних координат.
Для растрового уведення зображень використовуються сканери, що дозво-ляють не тільки ввести образ у комп'ютер, але й зробити їхню обробку й доку-ментування. Одна з важливих областей застосування сканерів - введення тек-стів. При цьому обробка уведеного зображення виконується програмним за без-печенням розпізнавання текстів, що у цей час стало вже досить розвиненим.
Всі перераховані вище пристрої уведення з погляду передачі інформації прикладним програмам варто розглядати як логічні. Функціонування систем уведення характеризується тим, яку інформацію пристрій передає в програму, коли і як воно передає цю інформацію. Ці питання стають особливо істотними при розробці користувальницького інтерфейсу.
- Добровольський ю.Г., Прохоров г.В.
- Тема 1. Основи нарисної геометрії Лекція 1. Основні правила виконання креслень.
- Короткий історичний огляд.
- Поняття про креслення.
- Креслярські приладдя.
- Креслярські матеріали.
- Лінії креслення.
- Формати креслень.
- Основні написи.
- Нанесення розмірів на кресленнях.
- Розмірні та виносні лінії.
- Розмірні числа.
- Масштаби.
- Побудова та поділ прямих ліній.
- Побудова паралельних прямих.
- Побудова перпендикулярних прямих.
- Коло та правильні многокутники. Основні терміни.
- Спряження ліній.
- Спряження паралельних ліній.
- Спряження двох дуг кіл.
- Спряження двох кіл.
- Циркульні криві.
- Лекальні криві.
- Парабола.
- Гіпербола.
- Синусоїда.
- Загальні положення.
- Вигляди.
- Виносні елементи.
- Перерізи.
- Виготовлення креслень
- Нанесення розмірів на робочих кресленнях деталей
- Лекція 2. Виконання інженерних креслень
- Додаток 1. Класифікація конструкторських документів
- Класифікація схем та основні положення гост 2.701-84
- Комплектність конструкторської документації
- Позначення виробів і конструкторських документів
- Нормативно-технічна документація єскд
- Додаток 2. Позначення в електричних колах. Символи
- Тема 2. Концептуальні основи подання графічних зображень. Двовимірні зображення та їх перетворення Лекція 3. Предмет, методи і завдання дисципліни.
- – Додаткова:
- Предмет і область застосування комп'ютерної графіки
- Коротка історія
- Технічні засоби підтримки комп'ютерної графіки
- Лекція 4. Принципи подання графічних зображень. Світло та зображення. Поняття трасування променів. Зоровий апарат людини
- Лекція 5. Геометричні перетворення двовимірних зображень
- Геометричні перетворення (перенос, масштабування, обертання)
- Відтинання, проективне перетворення, растрове перетворення відсікання відрізків
- Двовимірний алгоритм Коена-Сазерленда
- Проективне перетворення
- Растрове перетворення графічних примітивів
- Тема 3. Растрова та векторна графіка Лекція 6. Растрова графіка
- Лекція 7. Векторна графіка
- Загальна харктеристика прогарами CorelDraw Інтерфейс програми
- Стандартна панель інструментів
- Панель інструментів
- Створення векторних об'єктів Створення простих фігур
- Малювання ліній
- Основи роботи з текстом Види тексту у CorelDraw
- Редагування тексту
- Редагування зображень Виділення об'єктів
- Накладення об'єктів один на одного
- З'єднання об'єктів
- Зміна форми стандартних об'єктів
- Тема 4. Алгоритмічні основи тривимірної графіки Лекція 8. Основні поняття тривимірної графіки
- Основні поняття тривимірної графіки
- Тривимірні примітиви
- Програмні засоби обробки тривимірної графіки
- Зв'язок між декартовими та полярними координатами
- Тривимірне розширення
- Ц иліндричні координати
- Сферичні координати
- Перехід до інших систем координат
- Афінне перетворення
- Афінні координати Афінна система координат на прямій, на площині, в просторі
- Координати векторів і крапок в афінній системі координат
- Візуалізація просторових реалістичних сцен Світло- тіньовий аналіз
- Тема 5. Комп'ютерне проектування в системі AutoCad Лекція 9. Графічна система проектування AutoCad та створення 2d об'єктів в AutoCad
- Лекція 10. Графічна система проектування AutoCad та створення 3d об'єктів в AutoCad