6.4. Состав и структура графической 3d системы среднего класса.
Структура CSG – дерева построений в графической системе.
Системы среднего уровняимеют более широкий набор модулей, разрабатываемых фирмой - собственником пакета. Системы этого класса обеспечивают более высокую функциональность при проектировании, используют геометрические моделлеры с возможностями параметрического моделирования и ассоциативности, а некоторые включают наборы модулей управления проектными данными и механическими сборками. Технической базой для таких систем являются обычно рабочие станции с ОС UNIX или персональные компьютеры уровня графических рабочих станций. К подобным системам могут быть отнесены Cimatron, KONSYS 2000, Pro/JUNIOR, MicroStation(выделяется более развитыми функциональными возможностями) и др.
В результате совершенствования и развития эти системы по своим возможностям приближаются к системам масштаба предприятия, а в некоторых случаях даже превосходят их по функциональности.
И, конечно же, наибольшими возможностями обладают полномасштабные системы CAD/CAM/CAE.
Из них к числу наиболее распространённых в России относится Pro/Egineer(компании PTC), UNIGRAPHICS(фирмы EDC), CADDS 5(Computervision), CATIA (IBM). Это сложные, многофункциональные системы, в состав которых входит большой набор модулей (до 40 - 70) различного функционального назначения, из которых как типовые выделяются:
графическое ядро для создания геометрических моделей отдельных деталей, узлов и изделия в целом;
модуль создания и оперирования процессорной механосборки;
модули для инженерного анализа с использованием МКЭ, моделирования кинематики и динамики механизмов;
модели конструирования систем управления (гидравлический, пневматический, электрический и др.) и систем жизнеобеспечения (вентиляция, кондиционирование, теплоснабжение, электропитание и т.п.);
набор модулей для технологической подготовки производства, в основном модули генерации управляющих программ для различных видов механосборки, литья, штамповки и других техпроцессов;
модули обмена данными в различных графических форматах (IGES, STEP, DXF, VDA-FS и др.);
модули управления данными выполняемых проектов;
собственная или коммерческая СУБД;
модули подготовки и выпуска проектной и конструкторской документации (разработки чертежей по геометрическим моделям, подготовки спецификаций).
В большинстве случаев приведённый базовый набор модулей дополняется различными вспомогательными, и очень часто в состав универсальных систем включаются специализированные пакеты - ADAMS, MoldFlow, NASTRAN и т.д. Например, некоторые предприятия, используя CAD/CAM/CAE - систему Pro/Engineer фирмы PTC, тем не менее для генерации программ станков с ЧПУ предпочитают применять соответствующие модули других систем (CADDS, CIM CAD, SmartCAD), считая их более эффективными.
На большинстве западных машиностроительных предприятий эксплуатируются различные CAD/CAM/CAE системы различных версий и разной конфигурации, т.е. системы не однородные или гетерогенные. Основная проблема, возникающая при использовании гетерогенной системы (нередко усугубляемая неоднородностью инструментальной базы - системных программно-аппаратных средств, в том числе системы управления LAN и базами данных), заключается в переносе между системами геометрических моделей сконструированных деталей и узлов одного проекта, когда в каждой из систем нужно обеспечить адекватность описания геометрии с заданной точностью. Как правило, для этого используется преобразование внутреннего представления геометрических моделей в формат одного из распространённых графических стандартов (IGES, VDA-FS, STEP, DXF и др.). Однако, при этом зачастую не удаётся достаточно полно согласовать графические возможности системы - источника и системы - приёмника геометрической модели. И поэтому фирмы - разработчики систем CAD/CAM/CAE часто создают модули прямой связи между известными системами - например, CATIA-CADDS, I/EMS-MEDUSA и т.п.
- Часть 1. Основы технологии машиностроения.
- 1.1.Технологический процесс и его структура
- 1.2.Типы машиностроительного производства и методы его работы.
- 1.3. Факторы, влияющие на технологический процесс, исходные данные для проектирования, порядок проектирования технологических процессов механической обработки.
- 1.4.Технологичность конструкции изделия, примеры анализа технологичности конструкции для изделий некоторых типов (корпусные детали, валы и оси, втулки).
- 1.5. Понятие о базировании и базе, основной принцип базирования и закрепления изделий при механической обработке (правило шести точек), примеры базирования и закрепления твердых тел.
- 1.6. Классификация баз по гост 21495-76
- 1.7. Понятие о черновой, чистовой, настроечной, проверочной и искусственной базах.
- 1.8. Схемы базирования и установа заготовок на станках и приспособлениях.
- 1.9. Рекомендации по выбору черновых баз.
- 1.10. Выбор чистовых баз. Принципы последовательности, совмещения (единства) и постоянства баз.
- 1.11. Точность и погрешность при механической обработке, виды погрешностей.
- 1.12. Факторы, влияющие на точность изделий при механической обработке.
- 1.13. Методы и этапы механической обработки поверхностей. Показатели точности и шероховатости при различных этапах механической обработки.
- 1.14. Методика анализа точности механической обработки методом кривых распределения.
- 1.15. Методика анализа точности механической обработки методом точечных диаграмм.
- 1.16. Расчет припусков на механическую обработку.
- 1.19. Классификация технологических процессов механической обработки. Единичный, типовой, групповой технологические процессы. Групповая обработка. Комплексная деталь.
- 1.20. Виды описаний технологических процессов. Виды технологических документов.
- Часть 2. Технология производства машин.
- 2.1. Базирование корпусных деталей при механической обработке, структура технологического процесса при обработке корпусных деталей.
- 2.2. Обработка плоских поверхностей корпусных деталей, методы, оборудование.
- 2.3. Обработка основных отверстий в корпусных деталях, инструмент, оборудование.
- 2.4. Отделка основных отверстий в корпусных деталях
- 2.5. Обработка вспомогательных отверстий в корпусных деталях
- 2.6. Методы получения заготовок для ступенчатых валов, материалы, базирование, структура технологического процесса
- 2.7. Нарезание резьбы. Обработка шпоночных и шлицевых поверхностей при изготовлении валов.
- 2.8. Методы шлифование валов
- Хонингование отверстий
- 2.9. Отделочная обработка наружных поверхностей валов
- Полирование
- 2.10. Материалы, термическая обработка зубчатых колес, методы получения заготовок, базирование, структура технологического процесса при обработке цилиндрических зубчатых колес.
- Типовые технологические процессы изготовления цилиндрических зубчатых колёс.
- 2.11. Методы нарез. Зубьев цил.Зубч. Колес. Накатывание зубьев.
- 2.12. Методы отделочной обработки зубьев цил.Зубч.Колес.
- Часть 3. Размерный анализ технологических процессов
- 3.1. Методы достижения заданной точности замыкающего звена в сборочной размерной цепи, их выбор.
- 5 Методов:
- 3.2. Расчет сборочных размерных цепей методом максимума-минимума. Основные расчетные зависимости. Прямая и обратная задачи расчета размерных цепей.
- Поверочный расчет
- Проектный расчет
- 3.3. Принципы составления размерной схемы и особенности расчета технологических размерных цепей (показать на примере).
- Часть 4. Выбор и эффективное использование автоматизированного оборудования
- 4.1. Типовые компоновки и выбор типа приводов главного движения и подач многоцелевых станков (оц) для обработки корпусных деталей.
- 4.2. Типовые компоновки и выбор типа приводов главного движения и подач станков с чпу и оц для обр-ки тел вращения.
- 4.3. Автоматические линии из агрегатных станков.
- Применение авт. Линий
- 4.4. Роторные и роторно-конвейерные линии.
- 4.5. Причины повышенной точности обработки деталей на станках с чпу.
- 4.6. Современные режущие инструменты и методы выбора режимов резания.
- 4.7. Экономическая эффективность станков с чпу.
- Часть 5. Выбор и проектирование технологической оснастки.
- 5.1. Системы станочных приспособлений, их основные хар-ки и область использования.
- По целевому назначению приспособления делят на следующие группы.
- 1 Системы станочных приспособлений, их основные характеристики и область применнения
- 5.2. Основные элементы приспособлений. Стандартизация приспособлений и их элементов.
- 5.3. Методика проектирования приспособлений (исходные данные, последовательность этапов проектирования, выполняемые расчёты).
- 5.4. Методика расчёта и выбора механизированных приводов присп-ний (на примере пневматических и гидравлических).
- Часть 6. Автоматизация технологического проектирования.
- 6.1. Методика автоматизированного проектирования маршрута обработки детали.
- 6.2. Методика проектирования базы данных по выбору технологических объектов и механизм двухкритериального автоматизированного выбора металлорежущих инструментов.
- 6.3. Основные этапы опытно-конструкторских работ по гост 15.001-88. Пути повышения эффективности труда проектировщиков машиностроительных изделий.
- 6.4. Состав и структура графической 3d системы среднего класса.
- 6.5. Методика автоматизированного проектирования чертежей и эскизов в графических 3d системах среднего класса.
- 6.6. Методика проектирования сборочных операций установочно-зажимных приспособлений в графических 3d системах среднего класса методами “снизу-вверх” и “сверху-вниз”.
- Часть 7. Пути и методы достижения высокого качества и эффективности машиностроительного производства.
- 7.1. Основные условия, обеспечивающие экономически эффективное использование станков с чпу, гпм и гпс.
- 7.2. Основные факторы, обеспечивающие достижение высокой эффективности применения агрегатных станков и автоматических линий.
- 7.3. Понятие о системах активного контроля, адаптивного управления. Основные условия их эффективного использования.