5 Методов:
1. Полная взаимозаменяемость (брака нет, обеспечивает расчетом на mах-min).
Метод при котором требуемая точность замыкающего звена размерной цепи достигается у всех объектов путем включения в нее составляющих звеньев без выбора, подбора или изменения их значений.
Использование экономично в условиях достижения высокой точности при малом числе звеньев размерной цепи и при достаточно большом числе изделий, подлежащих сборке.
2. Неполная взаимозаменяемость (вероятностный способ расчета). Метод при котором требуемая точность замыкающего звена размерной цепи достигается у заранее обусловленной части объектов путем включения в нее составляющих звеньев без выбора, подбора или изменения их значений.
Целесообразно использовать для достижения точности в многозвенных размерных цепях; допуски на составляющие звенья при этом больше, чем в предыдущем методе, что превышает экономичность получения сборочных единиц. У части изделий погрешность замыкающего звена может быть за пределами допуска, т.е. возможен определенный риск несобираемости.
3. Групповой взаимозаменяемости (селективная сборка). Сущность селективной сборки заключается в том, что детали, которые поступают на сборку, сортируются по их действительным размерам на несколько групп. Сборочная единица составляется из деталей, которые входят в одноименные группы, и точность сопряжения повышается во столько раз, на сколько групп разбивают исходный допуск (рис.2.1.1).
Применение селективной сборки ограничивается рядом условий. Одно из главных – примерно одинаковое количество деталей в каждой из размерных групп. Это осуществимо только в условиях крупносерийного и массового производства.
Применяют для достижения наиболее высокой точности замыкающих звеньев малозвенных размерных цепей, требует четой организации сортировки деталей на размерные группы, их маркировки, хранения и транспортировки в специальной таре.
4. Регулирование (метод компенсаторов) - требуемая точность замыкающего звена, составляющих размерную цепь, достигается изменением размера или положения компенсирующего звена без удаления материала с компенсатора. При этом изготовление деталей, образующих размерную цепь, упрощается и удешевляется, а точность сборочных единиц остается в заданных пределах. Точность замыкающего звена размерной цепи обеспечивают использованием спец. звеньев – компенсаторов. Эти звенья могут быть: а) неподвижными, б) подвижными.
В качестве подвижного используют прокладки, шайбы, втулки и т.д. Компенсирующее звено выполняется с такой же точностью, как и остальные составляющие звенья (рис.2.1.3).
Подвижные компенсаторы выполняются в виде устройства, которое позволяет бесступенчато регулировать размер компенсирующего звена в пределах величины компенсации. Здесь м.б. использованы планки, винты, клиновые устройства и т.д. Эти устройства широко используются в крупносерийном и массовом производстве (рис.2.1.4).
5. Пригонка – метод, при котором требуемая точность замыкающего звена размерной цепи достигается изменением размера компенсирующего звена путем удаления с компенсатора определенного слоя материала. При расчете в размерной цепи выбирают компенсирующее звено, назначают экономически достижимые допуски на все звенья размерной цепи и определяют допуск Т∑ и координаты середины поля допуска Δо.
Используют при сборке изделий с большим числом звеньев; детали могут быть изготовлены с экономичными допусками, но требуются дополнительные затраты на пригонку компенсатора; экономичность в значительной степени зависит от правильного выбора компенсирующего звена, которое не должно принадлежать нескольким связанным размерным цепям.
6. Сборка с компенсирующими материалами. Требуемая точность замыкающего звена достигается применением компенсирующего материала, вводимого в зазор между сопрягаемыми поверхностями деталей после их установки в требуемом положении.
Используют для соединений и узлов, базирующихся по плоскостям; в ремонтной практике для восстановления работоспособности сборочных единиц, для изготовления оснастки.
- Часть 1. Основы технологии машиностроения.
- 1.1.Технологический процесс и его структура
- 1.2.Типы машиностроительного производства и методы его работы.
- 1.3. Факторы, влияющие на технологический процесс, исходные данные для проектирования, порядок проектирования технологических процессов механической обработки.
- 1.4.Технологичность конструкции изделия, примеры анализа технологичности конструкции для изделий некоторых типов (корпусные детали, валы и оси, втулки).
- 1.5. Понятие о базировании и базе, основной принцип базирования и закрепления изделий при механической обработке (правило шести точек), примеры базирования и закрепления твердых тел.
- 1.6. Классификация баз по гост 21495-76
- 1.7. Понятие о черновой, чистовой, настроечной, проверочной и искусственной базах.
- 1.8. Схемы базирования и установа заготовок на станках и приспособлениях.
- 1.9. Рекомендации по выбору черновых баз.
- 1.10. Выбор чистовых баз. Принципы последовательности, совмещения (единства) и постоянства баз.
- 1.11. Точность и погрешность при механической обработке, виды погрешностей.
- 1.12. Факторы, влияющие на точность изделий при механической обработке.
- 1.13. Методы и этапы механической обработки поверхностей. Показатели точности и шероховатости при различных этапах механической обработки.
- 1.14. Методика анализа точности механической обработки методом кривых распределения.
- 1.15. Методика анализа точности механической обработки методом точечных диаграмм.
- 1.16. Расчет припусков на механическую обработку.
- 1.19. Классификация технологических процессов механической обработки. Единичный, типовой, групповой технологические процессы. Групповая обработка. Комплексная деталь.
- 1.20. Виды описаний технологических процессов. Виды технологических документов.
- Часть 2. Технология производства машин.
- 2.1. Базирование корпусных деталей при механической обработке, структура технологического процесса при обработке корпусных деталей.
- 2.2. Обработка плоских поверхностей корпусных деталей, методы, оборудование.
- 2.3. Обработка основных отверстий в корпусных деталях, инструмент, оборудование.
- 2.4. Отделка основных отверстий в корпусных деталях
- 2.5. Обработка вспомогательных отверстий в корпусных деталях
- 2.6. Методы получения заготовок для ступенчатых валов, материалы, базирование, структура технологического процесса
- 2.7. Нарезание резьбы. Обработка шпоночных и шлицевых поверхностей при изготовлении валов.
- 2.8. Методы шлифование валов
- Хонингование отверстий
- 2.9. Отделочная обработка наружных поверхностей валов
- Полирование
- 2.10. Материалы, термическая обработка зубчатых колес, методы получения заготовок, базирование, структура технологического процесса при обработке цилиндрических зубчатых колес.
- Типовые технологические процессы изготовления цилиндрических зубчатых колёс.
- 2.11. Методы нарез. Зубьев цил.Зубч. Колес. Накатывание зубьев.
- 2.12. Методы отделочной обработки зубьев цил.Зубч.Колес.
- Часть 3. Размерный анализ технологических процессов
- 3.1. Методы достижения заданной точности замыкающего звена в сборочной размерной цепи, их выбор.
- 5 Методов:
- 3.2. Расчет сборочных размерных цепей методом максимума-минимума. Основные расчетные зависимости. Прямая и обратная задачи расчета размерных цепей.
- Поверочный расчет
- Проектный расчет
- 3.3. Принципы составления размерной схемы и особенности расчета технологических размерных цепей (показать на примере).
- Часть 4. Выбор и эффективное использование автоматизированного оборудования
- 4.1. Типовые компоновки и выбор типа приводов главного движения и подач многоцелевых станков (оц) для обработки корпусных деталей.
- 4.2. Типовые компоновки и выбор типа приводов главного движения и подач станков с чпу и оц для обр-ки тел вращения.
- 4.3. Автоматические линии из агрегатных станков.
- Применение авт. Линий
- 4.4. Роторные и роторно-конвейерные линии.
- 4.5. Причины повышенной точности обработки деталей на станках с чпу.
- 4.6. Современные режущие инструменты и методы выбора режимов резания.
- 4.7. Экономическая эффективность станков с чпу.
- Часть 5. Выбор и проектирование технологической оснастки.
- 5.1. Системы станочных приспособлений, их основные хар-ки и область использования.
- По целевому назначению приспособления делят на следующие группы.
- 1 Системы станочных приспособлений, их основные характеристики и область применнения
- 5.2. Основные элементы приспособлений. Стандартизация приспособлений и их элементов.
- 5.3. Методика проектирования приспособлений (исходные данные, последовательность этапов проектирования, выполняемые расчёты).
- 5.4. Методика расчёта и выбора механизированных приводов присп-ний (на примере пневматических и гидравлических).
- Часть 6. Автоматизация технологического проектирования.
- 6.1. Методика автоматизированного проектирования маршрута обработки детали.
- 6.2. Методика проектирования базы данных по выбору технологических объектов и механизм двухкритериального автоматизированного выбора металлорежущих инструментов.
- 6.3. Основные этапы опытно-конструкторских работ по гост 15.001-88. Пути повышения эффективности труда проектировщиков машиностроительных изделий.
- 6.4. Состав и структура графической 3d системы среднего класса.
- 6.5. Методика автоматизированного проектирования чертежей и эскизов в графических 3d системах среднего класса.
- 6.6. Методика проектирования сборочных операций установочно-зажимных приспособлений в графических 3d системах среднего класса методами “снизу-вверх” и “сверху-вниз”.
- Часть 7. Пути и методы достижения высокого качества и эффективности машиностроительного производства.
- 7.1. Основные условия, обеспечивающие экономически эффективное использование станков с чпу, гпм и гпс.
- 7.2. Основные факторы, обеспечивающие достижение высокой эффективности применения агрегатных станков и автоматических линий.
- 7.3. Понятие о системах активного контроля, адаптивного управления. Основные условия их эффективного использования.